A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearize...A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearized under the nonlinear transformation. Various exact solutions of the WBK model equations are obtained via the nonlinear transformation with the aid of solutions for the linear equation.展开更多
By using a new method and Mathematica, the Backlund transformations for Whitham-Broer-Kaup equations (WBK) are derived. The connections between WBK equation, heat equation and Burgers equation are found, which are use...By using a new method and Mathematica, the Backlund transformations for Whitham-Broer-Kaup equations (WBK) are derived. The connections between WBK equation, heat equation and Burgers equation are found, which are used to obtain three families of solutions for WBK equations, on of which is the family of solitary wave solutions.展开更多
All the possible traveling wave solutions of Whitham-Broer-Kaup (WBK) equation are investigated in the present paper. By employing phase plane analysis, transition boundaries are derived to divide the parameter spac...All the possible traveling wave solutions of Whitham-Broer-Kaup (WBK) equation are investigated in the present paper. By employing phase plane analysis, transition boundaries are derived to divide the parameter space into several regions associated with different types of phase portraits corresponding to different forms of wave solutions. All the exact expressions of bounded wave solutions are obtained as well as their existence conditions. The mechanism of bifurcation between different waves with varying Hamiltonian value has been revealed. It is pointed out that as the periods of two coexisted periodic waves tend to infinity, they may evolve to two solitary waves. Furthermore, when their trajectories pass through the common saddle point, the two solitary waves may merge into a periodic wave, and its amplitude is nearly equal to the sum of the amplitudes of the two solitary wave solutions.展开更多
Based on computerized symbolic computation,a new method and its algorithm are proposed for searching for exact travelling wave solutions of the nonlinear partial differential equations.Making use of our approach,we in...Based on computerized symbolic computation,a new method and its algorithm are proposed for searching for exact travelling wave solutions of the nonlinear partial differential equations.Making use of our approach,we investigate the Whitham-Broer-Kaup equation in shallow water and obtain new families of exact solutions,which include soliton-like solutions and periodic solutions.As its special cases,the solutions of classical long wave equations and modified Boussinesq equations can also be found.展开更多
基金Project supported by Science Research Foundation of the Returned Overseas Chinese Scholar,SEM,the NSF of Zhejiang Prov-ince(LY13A010020)Program for HNU(HNUEYT2013)
文摘A nonlinear transformation of the Whitham-Broer-Kaup (WBK) model equations in the shallow water small-amplitude regime is derived by using a simplified homogeneous balance method. The WBK model equations are linearized under the nonlinear transformation. Various exact solutions of the WBK model equations are obtained via the nonlinear transformation with the aid of solutions for the linear equation.
文摘By using a new method and Mathematica, the Backlund transformations for Whitham-Broer-Kaup equations (WBK) are derived. The connections between WBK equation, heat equation and Burgers equation are found, which are used to obtain three families of solutions for WBK equations, on of which is the family of solitary wave solutions.
基金the National Natural Science Foundation of China (10602020)
文摘All the possible traveling wave solutions of Whitham-Broer-Kaup (WBK) equation are investigated in the present paper. By employing phase plane analysis, transition boundaries are derived to divide the parameter space into several regions associated with different types of phase portraits corresponding to different forms of wave solutions. All the exact expressions of bounded wave solutions are obtained as well as their existence conditions. The mechanism of bifurcation between different waves with varying Hamiltonian value has been revealed. It is pointed out that as the periods of two coexisted periodic waves tend to infinity, they may evolve to two solitary waves. Furthermore, when their trajectories pass through the common saddle point, the two solitary waves may merge into a periodic wave, and its amplitude is nearly equal to the sum of the amplitudes of the two solitary wave solutions.
文摘Based on computerized symbolic computation,a new method and its algorithm are proposed for searching for exact travelling wave solutions of the nonlinear partial differential equations.Making use of our approach,we investigate the Whitham-Broer-Kaup equation in shallow water and obtain new families of exact solutions,which include soliton-like solutions and periodic solutions.As its special cases,the solutions of classical long wave equations and modified Boussinesq equations can also be found.