Characterizing the kerogen-hosted pore structures is essential to understand the adsorption,transport and storage potential in organic-rich shale reservoirs.In this paper,we first separated the organic matter(kerogen)...Characterizing the kerogen-hosted pore structures is essential to understand the adsorption,transport and storage potential in organic-rich shale reservoirs.In this paper,we first separated the organic matter(kerogen)from the mineral matrix in four different shale samples of the Bakken Formation with different thermal maturities and then analyzed their chemical compositions using the wide-angle X-ray scattering(WAXS)method.Next,we acquired small-angle X-ray scattering(SAXS)to characterize the structure of the organic matter and see how these two will relate.The WAXS results showed that the isolated kerogens have high purity(free of inorganic minerals)and retain different chemical compositions.Moreover,SAXS analysis revealed that the isolated kerogens have similar radius of gyration(R_(g))which is around 90Åand the molecules are in the compact mode.Based on the pore size distribution analysis from the SAXS data,two main peaks were found in all of these four samples with one peak less than 40Åand the other one larger than 1000Å.Also,the TEM images revealed that Sample 1 is abundant in pores with sizes around 20 nm while Sample 2 does not have pores of that size,which agrees with the results from the pore size distribution that was obtained from the SAXS method.Ultimately,this study exhibits how different analytical instruments can provide us with useful information from complex structures of geomaterials.展开更多
The fractions of one metallocene-based (mPE) and one conventional (znPE) ethylene-butene copolymer eluted at from temperature rising elution fractionation were selected for DSC and time-resolved small angle X-ray scat...The fractions of one metallocene-based (mPE) and one conventional (znPE) ethylene-butene copolymer eluted at from temperature rising elution fractionation were selected for DSC and time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization. The DSC and WAXS results show that two crystal structures exist in both mPE and znPE: structure A with higher melting temperature and structure B with lower melting temperature. It was found that original znPE (s-znPE) contains more highly ordered structure A than original mPE (s-mPE) in spite of the higher comonomer content of znPE. Another structure C is also identified because of higher crystallinity measured by WAXS than by DSC and is attributed to the interfacial region. The SAXS data were analyzed with correlation function and two maxima were observed in s-mPE and s-znPE, in agreement with the conclusion of two crystal populations drawn from DSC and WAXS results. These two crystal populations have close long periods in s-mPE, but very different long periods in s-znPE. In contrast, freshly crystallized mPE and znPE (f-mPE and f-znPE) contain only a single crystal population with a broader distribution of long period展开更多
Polyether and polyether/ester based TPU (thermoplastic polyurethanes) were investigated with wide-angle XRD (X-ray diffraction) and SAXS (small angle X-ray scattering). Furthermore, SAXS measurements were perfor...Polyether and polyether/ester based TPU (thermoplastic polyurethanes) were investigated with wide-angle XRD (X-ray diffraction) and SAXS (small angle X-ray scattering). Furthermore, SAXS measurements were performed in the temperature range of 30 ℃ to 130 ℃. Polyether based polymers exhibit only one broad diffraction signal in a region of 2 θ 15° to 25°. In case of polyurethanes with ether/ester modification, the broad diffraction signal arises with small sharp diffraction signals. SAXS measurements of polymers reveal the size and shape of the crystalline zones of the polymer. Between 30 ℃ and 130 ℃ the size of the crystalline zone changes significantly. The size decreases in most of investigated TPU. In the case of Desmopan 9365D an increase of the particle size was observed.展开更多
Wax gourd(Benincasa hispida)is an important cucurbit crop with economic and medicinal value.The myeloblastosis(MYB)gene family is one of the largest gene families in plants and regulates various biological processes,w...Wax gourd(Benincasa hispida)is an important cucurbit crop with economic and medicinal value.The myeloblastosis(MYB)gene family is one of the largest gene families in plants and regulates various biological processes,whereas the MYB gene family has not been systematically studied in wax gourd.In this study,we performed genome-wide identification of the MYB gene family in wax gourd and analyzed their phylogenetic relationship,MYB DNA-binding domain(MYB DBD),gene structure,protein motif,synteny,duplication mode and expression pattern.As a result,a total of 215 BhMYB genes(BhMYBs)were identified,belonging to four subfamilies:1R-,2R-,3R-and 4R-MYB subfamilies.Genes of 1R-MYB subfamily and 2R-MYB subfamily were subdivided into different subgroups respectively.The analysis of MYB DBD,gene structure and protein motif showed that the most genes in the same subgroup had similar characteristics and the 2R-MYB genes were more conserved than the 1R-MYB genes.Interestingly,the long terminal retrotransposons(LTR-RTs)were found in the long introns of several BhMYBs.The results of synteny analysis showed that there were more syntenic gene pairs between wax gourd and other cucurbit crops,while the least number of syntenic gene pairs existed between wax gourd and rice.Gene duplication was the main reason for the expansion of the MYB gene family in wax gourd,with the transposed duplication(TRD)mode contributing more.All duplication BhMYB genes were under purifying selection pressure.Further expression analysis showed that many BhMYBs exhibited obvious tissue-specific expression and several BhMYBs were significantly induced by one or more abiotic stresses.BhMYB79 was particularly expressed in roots and significantly induced by salt,drought,cold and heat stresses,overexpression of which led to reduced tolerance to salt stress in Arabidopsis.In conclusion,our results provide a systematic analysis of wax gourd MYB gene family and facilitate the biological role study of BhMYB79 during wax gourd salt stress response process.展开更多
Alpha-aluminum hydride(α-AlH_(3))is usually metastable due to the small enthalpy of formation,poor stability,high chemical activity,sensitivity to moisture and easy combination with water in the air.In order to inhib...Alpha-aluminum hydride(α-AlH_(3))is usually metastable due to the small enthalpy of formation,poor stability,high chemical activity,sensitivity to moisture and easy combination with water in the air.In order to inhibit the hygroscopicity ofα-AlH_(3) and improve its storage and stability,paraffin wax(PW)is selected as the coating material,and the solvent/non-solvent method is usually used to coat the surface ofα-AlH_(3).The structure and topography ofα-AlH_(3) before and after being coated by PW were characterized by Fourier transform infrared spectroscopy(FT-IR),X-ray diffractometer(XRD),X-ray electron spectroscopy(XPS),elemental analysis,and scanning electron microscopy(SEM).The results show that PW can form a uniform and complete coating layer on the surface ofα-AlH_(3),and the crystal structure and morphology of theα-AlH_(3) coated by PW are not changed.The moisture absorption weight gain rate is reduced from 12%to 0.8%,and the hygroscopicity is greatly reduced.Furthermore,theα-AlH_(3) coated by PW also showed excellent performance in resisting water erosion after theα-AlH_(3) coated by PW,and the hydrophobic angle increases from 27°to 98°after theα-AlH_(3) surface being coated by PW.展开更多
Plants possess a hydrophobic layer of wax on their aerial surface,consisting mainly of amorphous intra-cuticular wax and epicuticular wax crystals(Kunst and Samuels,2003).This waxy coating contains a wide variety of v...Plants possess a hydrophobic layer of wax on their aerial surface,consisting mainly of amorphous intra-cuticular wax and epicuticular wax crystals(Kunst and Samuels,2003).This waxy coating contains a wide variety of very-long-chain fatty acids(VLCFAs)and their derivatives,including alkanes,alcohols,aldehydes,esters,and ketones.展开更多
The effect of alcoholic polyethylene-vinyl acetate(EVA)product ethylene-vinyl alcohol copolymer(EVAL)on the low-temperature flow properties of model oil containing asphaltene(ASP)was investigated.The change of wax cry...The effect of alcoholic polyethylene-vinyl acetate(EVA)product ethylene-vinyl alcohol copolymer(EVAL)on the low-temperature flow properties of model oil containing asphaltene(ASP)was investigated.The change of wax crystal microscopic morphology of model oil before and after modification were examined,and the influence of asphaltene mass fraction on the rheological improvement effect of EVAL was analyzed.The composite system of EVAL and asphaltene significantly reduced the pour point,gel point,apparent viscosity,storage modulus and loss modulus of waxy oil at low temperatures.When the EVAL concentration is 400 ppm and the asphaltene mass fraction is 0.5 wt%,the synergistic effect of the two is optimal,which can reduce the pour point by 17℃and the modulus value by more than 98%.The introduction of EVAL strengthens the interaction between asphaltenes and wax crystals,forming EVALASP aggregates,which promote the adsorption of wax crystals on asphaltenes to form composite particles,and the polar groups prevent the aggregation of wax crystals and reduce the size of wax crystals,thus greatly improving the fluidity of waxy oils.展开更多
Carotenoid isomerase(CRTISO)is an important enzyme in carotenoid biosynthesis,and it catalyzes the conversion of lycopene precursors to lycopene in several plant species.However,the role of CRTISO in other biochemical...Carotenoid isomerase(CRTISO)is an important enzyme in carotenoid biosynthesis,and it catalyzes the conversion of lycopene precursors to lycopene in several plant species.However,the role of CRTISO in other biochemical processes during plant growth and development remains unclear.Here,we showed that Chinese kale boacrtiso mutants have distinctive characteristics,including a yellowgreen hue and glossy appearance,and this contrasts with the dark green and glaucous traits observed in wild-type(WT)plants.Analysis of pigments in mutants revealed that the reduction in the content of carotenoids and chlorophylls contributed to the yellow-green coloration observed in mutants.An examination of cuticular waxes in Chinese kale indicated that there was a decrease in both the total wax content and the content of individual waxes in boacrtiso mutants(bearing a mutation of BoaCRTISO),which may be caused by the decrease of abscisic acid(ABA)content.The expression of carotenoid,chlorophyll,ABA,and wax biosynthesis genes was downregulated in boacrtiso mutants.This finding confirms that BoaCRTISO regulates the biosynthesis of pigments,ABA,and cuticular waxes in Chinese kale.Our results provide new insights into the interplay between plant pigment and cuticular wax metabolic pathways in Brassica vegetables.展开更多
The synergistic regulatory effect of the ethylene transcription factor MdERF2 and ubiquitin ligase MdPUB17 on apple(Malus domestica)epidermal wax was examined by transferring the pRI101-MdPUB17-MdERF2 dual overexpress...The synergistic regulatory effect of the ethylene transcription factor MdERF2 and ubiquitin ligase MdPUB17 on apple(Malus domestica)epidermal wax was examined by transferring the pRI101-MdPUB17-MdERF2 dual overexpression vector(PUB17-ERF2),the empty vector(pRI101),the pRI101-MdPUB17 overexpression vector(PUB17),and the pRI101-MdERF2 overexpression vector(ERF2)into Agrobacterium tumefaciens,respectively,to infect apple callus and fruits with water as the control(CK).The levels of expression of the genes related to the biosynthesis,transport,composition,content,and structure of wax in the callus and/or fruits were studied under different treatments.The synergistic treatment of PUB17-ERF2 resulted in a decrease in the expression levels of MdCER1,MdCER6,MdLACS2,MdWSD1,MdABCG11,MdPAS2,MdFATB,and MdKASII genes as induced by the sole treatment of ERF2.Moreover,in the treatment of PUB17-ERF2,the mass distribution density of the wax was observed to be intermediate between the ERF2 and PUB17 treatments.Furthermore,ERF2 was found to increase the contents of alkanes,alcohols,and ketones,while significantly decreasing the contents of fatty acids and esters.In contrast,PUB17 responded oppositely.When treated with PUB17-ERF2,the effects of PUB17 and ERF2 were observed to counteract each other,which resulted in intermediate levels of these compounds.Additionally,the fruit in the ERF2,PUB17 and PUB17-ERF2 treatments had a different waxy microstructure.Overall,the findings indicate that both ERF2 and PUB17 have an impact on the gene expression,wax composition,content,and microstructure in apple epidermis.Importantly,the co-expression of MdPUB17 and MdERF2 demonstrates their synergistic regulation of the biosynthesis of wax in the apple epidermis.展开更多
Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification ex...Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification experiment on humans was then conducted to test the efficacy of the lipstick formula.Results showed that when the ratio of carnauba wax,shea butter and myristyl isopropyl ester was 3∶7∶3,the breaking force was optimal.After the subjects used the lipstick formula for 14 days,the moisture content of the lip stratum corneum significantly increased by 23.51% (P﹤0.05),the transepidermal water loss (TEWL) rate significantly decreased by 20.61%,the skin glossiness increased significantly by 9.88%,and the skin scale index decreased significantly by 55.76%.展开更多
Ethylene response factors 2(ERF2) are essential for plant growth, fruit ripening, metabolism, and resistance tostress. In this study, the expression levels of the genes for MdERF2 implicated in the biosynthesis, compo...Ethylene response factors 2(ERF2) are essential for plant growth, fruit ripening, metabolism, and resistance tostress. In this study, the expression levels of the genes for MdERF2 implicated in the biosynthesis, compositionand ultrastructure of fruit cuticular wax in apple(Malus domestica) were studied by the transfection of apple fruitand/or calli with MdERF2-overexpression(ERF2-OE) and MdERF2-interference(ERF2-AN) vectors. In addition,the direct target genes of MdERF2 related to wax biosynthesis were identified using electrophoretic mobility shiftassays(EMSAs) and dual-luciferase reporter(DLR) assays. The findings indicated that the expression levels offour wax biosynthetic genes, long-chain acyl-CoA synthetase 2(MdLACS2), eceriferum 1(MdCER1), eceriferum4(MdCER4), and eceriferum 6(MdCER6), were upregulated by ERF2-OE. In contrast, the expression levels ofthese genes were inhibited when MdERF2 was silenced. Furthermore, the overall structure and accumulationof fruit cuticular wax were influenced by the expression level of MdERF2. Treatment with ERF2-OE significantlyincreased the proportions of alkanes and ketones and reduced the proportions of fatty acids and esters. In addition,the EMSAs and DLR assays demonstrated that MdERF2 could bind directly to GCC-box elements in the promotersof MdLACS2, MdCER1, and MdCER6 to activate their transcription. These results confirmed that MdERF2 targetsthe up-regulation of expression of the MdLACS2, MdCER1, and MdCER6 genes, thereby altering the composition,content, and microstructure of apple epidermal wax.展开更多
This study aimed to systematically evaluate the clinical efficacy of combining wax therapy with conventional drug therapy for rheumatoid arthritis(RA)and to provide evidence supporting its clinical application.A compr...This study aimed to systematically evaluate the clinical efficacy of combining wax therapy with conventional drug therapy for rheumatoid arthritis(RA)and to provide evidence supporting its clinical application.A comprehensive search was conducted across PubMed,Cochrane Library,China Biomedical Literature Database(CBM),China National Knowledge Infrastructure(CNKI),Wanfang,and VIP databases from their inception to May 2024.Randomized controlled trials(RCTs)investigating the combination of wax therapy and conventional drug therapy for RA were included in the analysis.Statistical analysis was performed using Review Manager 5.3 software.Nine studies,encompassing a total of 843 patients,were included.The results demonstrated that the combination therapy significantly improved clinical efficacy compared to conventional drug therapy alone[RR=1.22,95%CI(1.11,1.34)].Moreover,the combination therapy led to notable improvements in DAS 28 scores[MD=-0.90,95%CI(-1.23,-0.57),P<0.00001],VAS scores[MD=-0.90,95%CI(-1.13,-0.66),P<0.00001],reduction in joint tenderness[MD=-1.27,95%CI(-1.81,-0.72),P<0.00001],decreased duration of morning stiffness[MD=-25.47,95%CI(-34.33,-16.61),P<0.00001],and lowered C-reactive protein levels[MD=-6.29,95%CI(-12.02,-0.57),P<0.05].In conclusion,wax therapy combined with conventional anti-rheumatic drugs significantly enhanced the clinical outcomes for RA patients by alleviating symptoms,reducing joint pain and morning stiffness,and decreasing inflammatory markers more effectively than conventional drug therapy alone.展开更多
[Objectives]This study was conducted to investigate the optimal preparation conditions and storage stability of camellia oil-based gel oil.[Methods]With camellia oil as the base oil,rice bran wax and monoglyceride as ...[Objectives]This study was conducted to investigate the optimal preparation conditions and storage stability of camellia oil-based gel oil.[Methods]With camellia oil as the base oil,rice bran wax and monoglyceride as gelling agents,a kind of composite gel oil was prepared by the direct gel method.The effects of different mass ratios of rice bran wax to monoglyceride,amounts of gelling agent,heating time and temperatures on the oil precipitation rate and hardness of gel oil were investigated.The optimal preparation conditions were determined by a response surface optimization experiment,and the storage stability of the prepared gel oil was studied with peroxide value and acid value as evaluation indexes.[Results]The results showed that the optimal preparation process of gel oil was as follows:mass ratio of rice bran wax to monoglyceride 2:8,addition amount of rice bran wax and monoglyceride 10%,heating temperature 95℃,and heating time 49 min.The peroxide value and acid value of composite gel oil stored at 4℃and room temperature for 5 weeks both showed an upward trend,and the acid value of gel oil differed significantly at different storage temperatures,which showed that the cold storage environment was more suitable for the gel oil.Compared with the gel oil prepared by single gelling agent,the camellia oil-based gel oil prepared by compounding rice bran wax and monoglyceride had lower oil precipitation rate and moderate hardness.[Conclusions]This study lays a theoretical foundation for developing new gel oil and expanding the application scope of camellia oil.展开更多
This paper presents a comprehensive experimental and numerical investigation of radiant floor heating(RFH)systems integrated with phase changematerial(PCM)-based thermal energy storage(TES).The study compares two unde...This paper presents a comprehensive experimental and numerical investigation of radiant floor heating(RFH)systems integrated with phase changematerial(PCM)-based thermal energy storage(TES).The study compares two underfloor pipe configurations:double serpentine and spiral.It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq.Key performance indicators including discharge temperature,heat transfer rate,liquid fraction evolution,and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations.Results demonstrate that the spiral design provides slightly more uniform temperature distribution on the tile surface at an inlet water temperature of 55℃,with an average difference of approximately 0.5%,the serpentine layout exhibits higher slab temperature distribution by about 0.66%.Notably,the serpentine configuration shows superior thermal homogeneity and heat distribution,with a 15.05%increase in heat gain at a 55℃ inlet temperature compared to the spiral design.The performance gap between the two layouts narrows as the inlet temperature increases from 50℃ in 5℃ increments by approximately 4.1%,3.7%,and 1.7%,respectively.Higher inlet temperatures also improve PCM discharging and charging rates,improving energy storage utilization.The findings provide significant design guidelines for sustainable heating systems for cold climates.展开更多
Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identi...Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identified a drought-responsive zinc finger protein,ZOS7,as highly expressed in Shanlandao upland rice.However,the function of this gene in controlling drought tolerance remains largely unexplored.In this study,we found that overexpressing ZOS7,a drought-responsive zinc finger protein,in rice increased biomass and yield under drought stress.Co-overexpressing ZOS7 and MYB60,encoding a protein with which ZOS7 interacted,intensified the yield increase.ZOS7 and MYB60 appear to form a module that confers drought tolerance by regulating stomatal density and wax biosynthesis.The ZOS7-MYB60module could be used in molecular breeding for drought tolerance in rice.展开更多
High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mecha...High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil.展开更多
Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition lay...Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.展开更多
The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoro...The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoroughly explored.In this study,we characterized a new maize mutant,ragged leaf4(rgd4),which exhibits crinkled and ragged leaves starting from the sixth leaf stage.The phenotype of rgd4 is conferred by ZmCER1,which encoding an aldehyde decarbonylase involved in wax biosynthesis.ZmCER1 function deficient mutant displayed reduced cuticular wax density and disordered bulliform cells(BCs),while ZmCER1 overexpressing plants exhibited the opposite effects,indicating that ZmCER1 regulates cuticular wax biosynthesis and BCs development.Additionally,as the density of cuticular wax increased,the water loss rate of detached leaf decreases,suggesting that ZmCER1 is positively correlated with plant drought tolerance.展开更多
文摘Characterizing the kerogen-hosted pore structures is essential to understand the adsorption,transport and storage potential in organic-rich shale reservoirs.In this paper,we first separated the organic matter(kerogen)from the mineral matrix in four different shale samples of the Bakken Formation with different thermal maturities and then analyzed their chemical compositions using the wide-angle X-ray scattering(WAXS)method.Next,we acquired small-angle X-ray scattering(SAXS)to characterize the structure of the organic matter and see how these two will relate.The WAXS results showed that the isolated kerogens have high purity(free of inorganic minerals)and retain different chemical compositions.Moreover,SAXS analysis revealed that the isolated kerogens have similar radius of gyration(R_(g))which is around 90Åand the molecules are in the compact mode.Based on the pore size distribution analysis from the SAXS data,two main peaks were found in all of these four samples with one peak less than 40Åand the other one larger than 1000Å.Also,the TEM images revealed that Sample 1 is abundant in pores with sizes around 20 nm while Sample 2 does not have pores of that size,which agrees with the results from the pore size distribution that was obtained from the SAXS method.Ultimately,this study exhibits how different analytical instruments can provide us with useful information from complex structures of geomaterials.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29734144 and 59703002) andby the Special Funds for Major State Basic Research Projects (Grant No. G1999064803).
文摘The fractions of one metallocene-based (mPE) and one conventional (znPE) ethylene-butene copolymer eluted at from temperature rising elution fractionation were selected for DSC and time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) characterization. The DSC and WAXS results show that two crystal structures exist in both mPE and znPE: structure A with higher melting temperature and structure B with lower melting temperature. It was found that original znPE (s-znPE) contains more highly ordered structure A than original mPE (s-mPE) in spite of the higher comonomer content of znPE. Another structure C is also identified because of higher crystallinity measured by WAXS than by DSC and is attributed to the interfacial region. The SAXS data were analyzed with correlation function and two maxima were observed in s-mPE and s-znPE, in agreement with the conclusion of two crystal populations drawn from DSC and WAXS results. These two crystal populations have close long periods in s-mPE, but very different long periods in s-znPE. In contrast, freshly crystallized mPE and znPE (f-mPE and f-znPE) contain only a single crystal population with a broader distribution of long period
文摘Polyether and polyether/ester based TPU (thermoplastic polyurethanes) were investigated with wide-angle XRD (X-ray diffraction) and SAXS (small angle X-ray scattering). Furthermore, SAXS measurements were performed in the temperature range of 30 ℃ to 130 ℃. Polyether based polymers exhibit only one broad diffraction signal in a region of 2 θ 15° to 25°. In case of polyurethanes with ether/ester modification, the broad diffraction signal arises with small sharp diffraction signals. SAXS measurements of polymers reveal the size and shape of the crystalline zones of the polymer. Between 30 ℃ and 130 ℃ the size of the crystalline zone changes significantly. The size decreases in most of investigated TPU. In the case of Desmopan 9365D an increase of the particle size was observed.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2020B020220003)National Natural Science Foundation of China(32202504)+2 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515030049)Guangdong Rural Revitalization Strategy Special Project(Grant No.2023-NJS-00-003)Special fund for scientific and technological talents introduction of Guangdong Academy of Agricultural Sciences(Grant No.R2021YJ-YB2004)。
文摘Wax gourd(Benincasa hispida)is an important cucurbit crop with economic and medicinal value.The myeloblastosis(MYB)gene family is one of the largest gene families in plants and regulates various biological processes,whereas the MYB gene family has not been systematically studied in wax gourd.In this study,we performed genome-wide identification of the MYB gene family in wax gourd and analyzed their phylogenetic relationship,MYB DNA-binding domain(MYB DBD),gene structure,protein motif,synteny,duplication mode and expression pattern.As a result,a total of 215 BhMYB genes(BhMYBs)were identified,belonging to four subfamilies:1R-,2R-,3R-and 4R-MYB subfamilies.Genes of 1R-MYB subfamily and 2R-MYB subfamily were subdivided into different subgroups respectively.The analysis of MYB DBD,gene structure and protein motif showed that the most genes in the same subgroup had similar characteristics and the 2R-MYB genes were more conserved than the 1R-MYB genes.Interestingly,the long terminal retrotransposons(LTR-RTs)were found in the long introns of several BhMYBs.The results of synteny analysis showed that there were more syntenic gene pairs between wax gourd and other cucurbit crops,while the least number of syntenic gene pairs existed between wax gourd and rice.Gene duplication was the main reason for the expansion of the MYB gene family in wax gourd,with the transposed duplication(TRD)mode contributing more.All duplication BhMYB genes were under purifying selection pressure.Further expression analysis showed that many BhMYBs exhibited obvious tissue-specific expression and several BhMYBs were significantly induced by one or more abiotic stresses.BhMYB79 was particularly expressed in roots and significantly induced by salt,drought,cold and heat stresses,overexpression of which led to reduced tolerance to salt stress in Arabidopsis.In conclusion,our results provide a systematic analysis of wax gourd MYB gene family and facilitate the biological role study of BhMYB79 during wax gourd salt stress response process.
文摘Alpha-aluminum hydride(α-AlH_(3))is usually metastable due to the small enthalpy of formation,poor stability,high chemical activity,sensitivity to moisture and easy combination with water in the air.In order to inhibit the hygroscopicity ofα-AlH_(3) and improve its storage and stability,paraffin wax(PW)is selected as the coating material,and the solvent/non-solvent method is usually used to coat the surface ofα-AlH_(3).The structure and topography ofα-AlH_(3) before and after being coated by PW were characterized by Fourier transform infrared spectroscopy(FT-IR),X-ray diffractometer(XRD),X-ray electron spectroscopy(XPS),elemental analysis,and scanning electron microscopy(SEM).The results show that PW can form a uniform and complete coating layer on the surface ofα-AlH_(3),and the crystal structure and morphology of theα-AlH_(3) coated by PW are not changed.The moisture absorption weight gain rate is reduced from 12%to 0.8%,and the hygroscopicity is greatly reduced.Furthermore,theα-AlH_(3) coated by PW also showed excellent performance in resisting water erosion after theα-AlH_(3) coated by PW,and the hydrophobic angle increases from 27°to 98°after theα-AlH_(3) surface being coated by PW.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31972405).
文摘Plants possess a hydrophobic layer of wax on their aerial surface,consisting mainly of amorphous intra-cuticular wax and epicuticular wax crystals(Kunst and Samuels,2003).This waxy coating contains a wide variety of very-long-chain fatty acids(VLCFAs)and their derivatives,including alkanes,alcohols,aldehydes,esters,and ketones.
基金financially supported by the National Natural Science Foundation of China(No.52076036)。
文摘The effect of alcoholic polyethylene-vinyl acetate(EVA)product ethylene-vinyl alcohol copolymer(EVAL)on the low-temperature flow properties of model oil containing asphaltene(ASP)was investigated.The change of wax crystal microscopic morphology of model oil before and after modification were examined,and the influence of asphaltene mass fraction on the rheological improvement effect of EVAL was analyzed.The composite system of EVAL and asphaltene significantly reduced the pour point,gel point,apparent viscosity,storage modulus and loss modulus of waxy oil at low temperatures.When the EVAL concentration is 400 ppm and the asphaltene mass fraction is 0.5 wt%,the synergistic effect of the two is optimal,which can reduce the pour point by 17℃and the modulus value by more than 98%.The introduction of EVAL strengthens the interaction between asphaltenes and wax crystals,forming EVALASP aggregates,which promote the adsorption of wax crystals on asphaltenes to form composite particles,and the polar groups prevent the aggregation of wax crystals and reduce the size of wax crystals,thus greatly improving the fluidity of waxy oils.
基金supported by National Natural Science Foundation of China(Grant Nos.32372732,32072586,32372683,32460750,31500247)Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC1689)+3 种基金Sichuan Innovation Team of National Modern Agricultural Industry Technology System(Grant No.SCCXTD-2024-05)Central Leading Local Science and Technology Development Project(Grant No.2023ZYD0090)the Joint research on mustard breeding in Sichuan Province(Grant No.2023YZ002)Guizhou Provincial Key Technology R&D Program[(2021)No.207].
文摘Carotenoid isomerase(CRTISO)is an important enzyme in carotenoid biosynthesis,and it catalyzes the conversion of lycopene precursors to lycopene in several plant species.However,the role of CRTISO in other biochemical processes during plant growth and development remains unclear.Here,we showed that Chinese kale boacrtiso mutants have distinctive characteristics,including a yellowgreen hue and glossy appearance,and this contrasts with the dark green and glaucous traits observed in wild-type(WT)plants.Analysis of pigments in mutants revealed that the reduction in the content of carotenoids and chlorophylls contributed to the yellow-green coloration observed in mutants.An examination of cuticular waxes in Chinese kale indicated that there was a decrease in both the total wax content and the content of individual waxes in boacrtiso mutants(bearing a mutation of BoaCRTISO),which may be caused by the decrease of abscisic acid(ABA)content.The expression of carotenoid,chlorophyll,ABA,and wax biosynthesis genes was downregulated in boacrtiso mutants.This finding confirms that BoaCRTISO regulates the biosynthesis of pigments,ABA,and cuticular waxes in Chinese kale.Our results provide new insights into the interplay between plant pigment and cuticular wax metabolic pathways in Brassica vegetables.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.32272384 and 32172278)。
文摘The synergistic regulatory effect of the ethylene transcription factor MdERF2 and ubiquitin ligase MdPUB17 on apple(Malus domestica)epidermal wax was examined by transferring the pRI101-MdPUB17-MdERF2 dual overexpression vector(PUB17-ERF2),the empty vector(pRI101),the pRI101-MdPUB17 overexpression vector(PUB17),and the pRI101-MdERF2 overexpression vector(ERF2)into Agrobacterium tumefaciens,respectively,to infect apple callus and fruits with water as the control(CK).The levels of expression of the genes related to the biosynthesis,transport,composition,content,and structure of wax in the callus and/or fruits were studied under different treatments.The synergistic treatment of PUB17-ERF2 resulted in a decrease in the expression levels of MdCER1,MdCER6,MdLACS2,MdWSD1,MdABCG11,MdPAS2,MdFATB,and MdKASII genes as induced by the sole treatment of ERF2.Moreover,in the treatment of PUB17-ERF2,the mass distribution density of the wax was observed to be intermediate between the ERF2 and PUB17 treatments.Furthermore,ERF2 was found to increase the contents of alkanes,alcohols,and ketones,while significantly decreasing the contents of fatty acids and esters.In contrast,PUB17 responded oppositely.When treated with PUB17-ERF2,the effects of PUB17 and ERF2 were observed to counteract each other,which resulted in intermediate levels of these compounds.Additionally,the fruit in the ERF2,PUB17 and PUB17-ERF2 treatments had a different waxy microstructure.Overall,the findings indicate that both ERF2 and PUB17 have an impact on the gene expression,wax composition,content,and microstructure in apple epidermis.Importantly,the co-expression of MdPUB17 and MdERF2 demonstrates their synergistic regulation of the biosynthesis of wax in the apple epidermis.
文摘Starting from the perspective of formula and efficacy,orthogonal experiments were first performed to explore the optimal ratio of three raw materials that potentially affect breaking force of lipsticks,verification experiment on humans was then conducted to test the efficacy of the lipstick formula.Results showed that when the ratio of carnauba wax,shea butter and myristyl isopropyl ester was 3∶7∶3,the breaking force was optimal.After the subjects used the lipstick formula for 14 days,the moisture content of the lip stratum corneum significantly increased by 23.51% (P﹤0.05),the transepidermal water loss (TEWL) rate significantly decreased by 20.61%,the skin glossiness increased significantly by 9.88%,and the skin scale index decreased significantly by 55.76%.
基金supported by the National Natural Science Foundation of China (32272384)the Natural Science Foundation of Shandong Province, China (ZR2020MC149)。
文摘Ethylene response factors 2(ERF2) are essential for plant growth, fruit ripening, metabolism, and resistance tostress. In this study, the expression levels of the genes for MdERF2 implicated in the biosynthesis, compositionand ultrastructure of fruit cuticular wax in apple(Malus domestica) were studied by the transfection of apple fruitand/or calli with MdERF2-overexpression(ERF2-OE) and MdERF2-interference(ERF2-AN) vectors. In addition,the direct target genes of MdERF2 related to wax biosynthesis were identified using electrophoretic mobility shiftassays(EMSAs) and dual-luciferase reporter(DLR) assays. The findings indicated that the expression levels offour wax biosynthetic genes, long-chain acyl-CoA synthetase 2(MdLACS2), eceriferum 1(MdCER1), eceriferum4(MdCER4), and eceriferum 6(MdCER6), were upregulated by ERF2-OE. In contrast, the expression levels ofthese genes were inhibited when MdERF2 was silenced. Furthermore, the overall structure and accumulationof fruit cuticular wax were influenced by the expression level of MdERF2. Treatment with ERF2-OE significantlyincreased the proportions of alkanes and ketones and reduced the proportions of fatty acids and esters. In addition,the EMSAs and DLR assays demonstrated that MdERF2 could bind directly to GCC-box elements in the promotersof MdLACS2, MdCER1, and MdCER6 to activate their transcription. These results confirmed that MdERF2 targetsthe up-regulation of expression of the MdLACS2, MdCER1, and MdCER6 genes, thereby altering the composition,content, and microstructure of apple epidermal wax.
基金supported by the Key Research and Development Program of Yunnan Science and Technology Department(Grant No.202303AC100326)the National Natural Science Foundation of China(Grant No.81960863)the Education Department of Yunnan Province(Grant No.2023Y0463 and 2024Y380).
文摘This study aimed to systematically evaluate the clinical efficacy of combining wax therapy with conventional drug therapy for rheumatoid arthritis(RA)and to provide evidence supporting its clinical application.A comprehensive search was conducted across PubMed,Cochrane Library,China Biomedical Literature Database(CBM),China National Knowledge Infrastructure(CNKI),Wanfang,and VIP databases from their inception to May 2024.Randomized controlled trials(RCTs)investigating the combination of wax therapy and conventional drug therapy for RA were included in the analysis.Statistical analysis was performed using Review Manager 5.3 software.Nine studies,encompassing a total of 843 patients,were included.The results demonstrated that the combination therapy significantly improved clinical efficacy compared to conventional drug therapy alone[RR=1.22,95%CI(1.11,1.34)].Moreover,the combination therapy led to notable improvements in DAS 28 scores[MD=-0.90,95%CI(-1.23,-0.57),P<0.00001],VAS scores[MD=-0.90,95%CI(-1.13,-0.66),P<0.00001],reduction in joint tenderness[MD=-1.27,95%CI(-1.81,-0.72),P<0.00001],decreased duration of morning stiffness[MD=-25.47,95%CI(-34.33,-16.61),P<0.00001],and lowered C-reactive protein levels[MD=-6.29,95%CI(-12.02,-0.57),P<0.05].In conclusion,wax therapy combined with conventional anti-rheumatic drugs significantly enhanced the clinical outcomes for RA patients by alleviating symptoms,reducing joint pain and morning stiffness,and decreasing inflammatory markers more effectively than conventional drug therapy alone.
文摘[Objectives]This study was conducted to investigate the optimal preparation conditions and storage stability of camellia oil-based gel oil.[Methods]With camellia oil as the base oil,rice bran wax and monoglyceride as gelling agents,a kind of composite gel oil was prepared by the direct gel method.The effects of different mass ratios of rice bran wax to monoglyceride,amounts of gelling agent,heating time and temperatures on the oil precipitation rate and hardness of gel oil were investigated.The optimal preparation conditions were determined by a response surface optimization experiment,and the storage stability of the prepared gel oil was studied with peroxide value and acid value as evaluation indexes.[Results]The results showed that the optimal preparation process of gel oil was as follows:mass ratio of rice bran wax to monoglyceride 2:8,addition amount of rice bran wax and monoglyceride 10%,heating temperature 95℃,and heating time 49 min.The peroxide value and acid value of composite gel oil stored at 4℃and room temperature for 5 weeks both showed an upward trend,and the acid value of gel oil differed significantly at different storage temperatures,which showed that the cold storage environment was more suitable for the gel oil.Compared with the gel oil prepared by single gelling agent,the camellia oil-based gel oil prepared by compounding rice bran wax and monoglyceride had lower oil precipitation rate and moderate hardness.[Conclusions]This study lays a theoretical foundation for developing new gel oil and expanding the application scope of camellia oil.
文摘This paper presents a comprehensive experimental and numerical investigation of radiant floor heating(RFH)systems integrated with phase changematerial(PCM)-based thermal energy storage(TES).The study compares two underfloor pipe configurations:double serpentine and spiral.It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq.Key performance indicators including discharge temperature,heat transfer rate,liquid fraction evolution,and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations.Results demonstrate that the spiral design provides slightly more uniform temperature distribution on the tile surface at an inlet water temperature of 55℃,with an average difference of approximately 0.5%,the serpentine layout exhibits higher slab temperature distribution by about 0.66%.Notably,the serpentine configuration shows superior thermal homogeneity and heat distribution,with a 15.05%increase in heat gain at a 55℃ inlet temperature compared to the spiral design.The performance gap between the two layouts narrows as the inlet temperature increases from 50℃ in 5℃ increments by approximately 4.1%,3.7%,and 1.7%,respectively.Higher inlet temperatures also improve PCM discharging and charging rates,improving energy storage utilization.The findings provide significant design guidelines for sustainable heating systems for cold climates.
基金supported by the Finance Science and Technology Project of Hainan Province(ZDYF2021XDNY167)the National Natural Science Foundation of China(32170245,32260447)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City(SCKJJYRC-2022-04)Scientific Research Foundation of Hainan Tropical Ocean University(RHDRC202342)。
文摘Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identified a drought-responsive zinc finger protein,ZOS7,as highly expressed in Shanlandao upland rice.However,the function of this gene in controlling drought tolerance remains largely unexplored.In this study,we found that overexpressing ZOS7,a drought-responsive zinc finger protein,in rice increased biomass and yield under drought stress.Co-overexpressing ZOS7 and MYB60,encoding a protein with which ZOS7 interacted,intensified the yield increase.ZOS7 and MYB60 appear to form a module that confers drought tolerance by regulating stomatal density and wax biosynthesis.The ZOS7-MYB60module could be used in molecular breeding for drought tolerance in rice.
基金financially supported by the Project funded by China Postdoctoral Science Foundation (NO.2022M723500)the National Natural Science Foundation of China (NO.52204069)the Sinopec Science and Technology Project of China (NO.P22015)。
文摘High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil.
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+2 种基金CNPC Innovation Found(Grant No.2022DQ02-0501),Changzhou Applied Basic Research Program(Grant No.CJ20230030)The major project of universities affiliated with Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project。
文摘Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.
基金supported by Professor Zhukuan Cheng from Institute of Genetics and Developmental Biology,Chinese Academy of Sciencessupported by the Funds of Key R&D Program of Shandong Province(2022LZGC006)Key R&D Program of Shandong Province(2023LZGC006)。
文摘The cuticular wax,acting as the ultimate defense barrier,is essential for the normal morphogenesis of plant organs.Despite this importance,the connection between wax composition and leaf development has not been thoroughly explored.In this study,we characterized a new maize mutant,ragged leaf4(rgd4),which exhibits crinkled and ragged leaves starting from the sixth leaf stage.The phenotype of rgd4 is conferred by ZmCER1,which encoding an aldehyde decarbonylase involved in wax biosynthesis.ZmCER1 function deficient mutant displayed reduced cuticular wax density and disordered bulliform cells(BCs),while ZmCER1 overexpressing plants exhibited the opposite effects,indicating that ZmCER1 regulates cuticular wax biosynthesis and BCs development.Additionally,as the density of cuticular wax increased,the water loss rate of detached leaf decreases,suggesting that ZmCER1 is positively correlated with plant drought tolerance.