A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as hi...A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as higher flux and lower energyconsumption. The airlift membrane-bioreactor is potentiallyapplicable in bioengineer- ing and environmental protection fields.展开更多
In this paper is describing the physicochemical behavior of polyelectrolytes (PEs) used in waste water treatment with mono-, di- and trivalent metal ions as K+, Mg2+, Zn2+, Fe3+, Sn2+, Cd2+, Pb2+, Cu2+, Ni2+, Al3+ and...In this paper is describing the physicochemical behavior of polyelectrolytes (PEs) used in waste water treatment with mono-, di- and trivalent metal ions as K+, Mg2+, Zn2+, Fe3+, Sn2+, Cd2+, Pb2+, Cu2+, Ni2+, Al3+ and Cr3+. A coagulant polyelectrolyte Poly(vinyl sulfate) potassium salt (PVSK), and a commercial available Flocculant Trident 2756, were used as models for the study. The colloidal titration UV-Vis spectroscopy technique was successfully implemented in order to evaluate the complexation of PEs with Toluidine Blue O (OTB) and the ability of different metal ions to displace the OTB from the PE-OTB complex and form the PE-metal ion complex. From the experiments was concluded that PVSK has a high affinity for Al3+ and Mg2+ while the Flocculant has the highest affinity for Sn2+ followed by Zn2+and Mg2+. The absorbance profiles of polyelectrolyte-OTB complex (Absorbance vs. Metal/PE) were used to calculate association constants. On the other hand, the mass balance of OTB and its absorbance profiles were used to calculate the association constants of polyelectrolyte-metal ion complexes. Thus metal ions with the highest affinities have the highest association constant. Metal ions with the highest affinities present the highest values of association constant.展开更多
The treatment ofwastewater that includes toxic organic pollutants such as dyes, phenoaniline, phenols and their derivatives is still a challenge due to their biorecalcitrant and acute toxicity to the widespread accept...The treatment ofwastewater that includes toxic organic pollutants such as dyes, phenoaniline, phenols and their derivatives is still a challenge due to their biorecalcitrant and acute toxicity to the widespread acceptance of water recycling. Three-dimensional (3D) Bi2WO6 microsphere was synthesized by the hydrothermal method using Bi(NO3)3 and Na2WO4 as raw materials. This structure exhibits high photocatalytic activity for the dyes, toxic organic compounds. The degradation of methlyene blue is 100% in 30 min, 4-nitrylphenol is 95% in 60min and p-nitrylphenol is 95% in 75min in ultraviolet (UV) light irradiation. 3D Bi2WO6 microsphere is also a good photocatalyst to treat the printing and dyeing sewage, and exhibits high repeatability. After being used the 20th time, Bi2WO6 still has high activity to degrade the printing and dyeing sewage, which is very important for a photocatalyst to be used in industry. This study will pave a new way to treat industry wastewater.展开更多
Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fue...Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fuels.In addition to providing oil-based biofuels,the use of microalgae can potentially reduce environmental pollution because algae can use industrial byproducts(CO_2,NOx,wastewater,and others)as nutrition sources.However,our previous study showed that the unacceptably high cost of biofuels production,especially culturing microalgae,remains the biggest obstacle hindering the large-scale implementation of microalgae biofuels.Therefore,future efforts will likely emphasize biotechnological approaches to improve the economic feasibility of algal biofuel production.This review summarizes the progress made over the last decade in environmental applications of microalgae,combined with data on CO_2 capture,NOx biotransformation,wastewater treatment,and synergistic applications,and discusses future prospects.展开更多
文摘A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as higher flux and lower energyconsumption. The airlift membrane-bioreactor is potentiallyapplicable in bioengineer- ing and environmental protection fields.
文摘In this paper is describing the physicochemical behavior of polyelectrolytes (PEs) used in waste water treatment with mono-, di- and trivalent metal ions as K+, Mg2+, Zn2+, Fe3+, Sn2+, Cd2+, Pb2+, Cu2+, Ni2+, Al3+ and Cr3+. A coagulant polyelectrolyte Poly(vinyl sulfate) potassium salt (PVSK), and a commercial available Flocculant Trident 2756, were used as models for the study. The colloidal titration UV-Vis spectroscopy technique was successfully implemented in order to evaluate the complexation of PEs with Toluidine Blue O (OTB) and the ability of different metal ions to displace the OTB from the PE-OTB complex and form the PE-metal ion complex. From the experiments was concluded that PVSK has a high affinity for Al3+ and Mg2+ while the Flocculant has the highest affinity for Sn2+ followed by Zn2+and Mg2+. The absorbance profiles of polyelectrolyte-OTB complex (Absorbance vs. Metal/PE) were used to calculate association constants. On the other hand, the mass balance of OTB and its absorbance profiles were used to calculate the association constants of polyelectrolyte-metal ion complexes. Thus metal ions with the highest affinities have the highest association constant. Metal ions with the highest affinities present the highest values of association constant.
文摘The treatment ofwastewater that includes toxic organic pollutants such as dyes, phenoaniline, phenols and their derivatives is still a challenge due to their biorecalcitrant and acute toxicity to the widespread acceptance of water recycling. Three-dimensional (3D) Bi2WO6 microsphere was synthesized by the hydrothermal method using Bi(NO3)3 and Na2WO4 as raw materials. This structure exhibits high photocatalytic activity for the dyes, toxic organic compounds. The degradation of methlyene blue is 100% in 30 min, 4-nitrylphenol is 95% in 60min and p-nitrylphenol is 95% in 75min in ultraviolet (UV) light irradiation. 3D Bi2WO6 microsphere is also a good photocatalyst to treat the printing and dyeing sewage, and exhibits high repeatability. After being used the 20th time, Bi2WO6 still has high activity to degrade the printing and dyeing sewage, which is very important for a photocatalyst to be used in industry. This study will pave a new way to treat industry wastewater.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.31770128&31700107)the Hubei Provincial Natural Science Foundation(Grant No.2017CFA021)
文摘Over the past ten years,microalgae have been investigated as promising sources of renewable energy to replace the diminishing supply of fossil fuels and mitigate the environmental pollution caused by use of fossil fuels.In addition to providing oil-based biofuels,the use of microalgae can potentially reduce environmental pollution because algae can use industrial byproducts(CO_2,NOx,wastewater,and others)as nutrition sources.However,our previous study showed that the unacceptably high cost of biofuels production,especially culturing microalgae,remains the biggest obstacle hindering the large-scale implementation of microalgae biofuels.Therefore,future efforts will likely emphasize biotechnological approaches to improve the economic feasibility of algal biofuel production.This review summarizes the progress made over the last decade in environmental applications of microalgae,combined with data on CO_2 capture,NOx biotransformation,wastewater treatment,and synergistic applications,and discusses future prospects.