The thioacetamide derivative(TD)-composite preservation system(TDCPS)exhibits superior preservation effects on natural rubber latex(NRL)and significantly enhances its vulcanization efficiency and mechanical properties...The thioacetamide derivative(TD)-composite preservation system(TDCPS)exhibits superior preservation effects on natural rubber latex(NRL)and significantly enhances its vulcanization efficiency and mechanical properties.This study primarily investigated the principal chemical groups and mechanism of action of TDCPS in promoting NRL vulcanization through a comparative analysis.The results indicated that the key functional groups(thioamide and pyridine)in TDCPS synergistically accelerated crosslinking,reducing the vulcanization time by 41.18%compared to the high-ammonia(HA)preservation system.At an optimal TDCPS dosage of 5 mmol·L^(−1),vulcanized films achieved a tensile strength of 34.18 MPa,with a sulfur content of 1.5 phr further improving the strength by 42.26%.TD outperformed the conventional accelerators 2-imidazolidinethione(ETU)and 3-hydroxypyridine(3-Hp)in promoting the crosslinking density and mechanical performance while eliminating ammonia-related environmental risks.This eco-friendly system demonstrates the industrial potential for sustainable rubber production.展开更多
This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber(NR)latex-dipped products.Utilizing sulfur vulcanization,known for its operational simplicity...This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber(NR)latex-dipped products.Utilizing sulfur vulcanization,known for its operational simplicity and cost-effectiveness,we examine its ability to enhance product elasticity and mechanical strength through various sulfidic bond formations such as mono-,di-,and polysulfidic bonds.Different vulcanization systems and sulfur contents were evaluated for their influence on the mechanical attributes of latex films,employing three types of NR latex,namely concentrated NR(CNR),deproteinized NR(DPNR),and small rubber particle NR(SRP),each representing distinct non-rubber components(NRCs).The study utilized advanced atomic force microscopy(AFM)equipped with PeakForce Quantitative Nanomechanical Mapping(QNM)to visualize and measure Young’s modulus distribution across the film of pre-vulcanized latex.Our findings reveal that films by CNR processed using the conventional vulcanization(CV)system exhibited enhanced tensile strength and elongation at break.It even showed a lower crosslink density than those processed using the efficient vulcanization(EV)system.Interestingly,DPNR films showed a more uniform distribution of Young’s modulus,correlating well with their superior mechanical strength.In contrast,SRP films showed excessive network structure formation in the particles due to accelerated vulcanization rates,hampering subsequent post-vulcanization interparticle crosslinking in film formation and remaining more rigid.The overall results Illustrate clearly that the ultimate mechanical properties of the latex films are strongly dependent on the type of sulfidic bonds formed.This research reveals further the very intricate relationship between the vulcanization methods,sulfur content,and latex type in optimizing the mechanical performance of NR latex products.It provides valuable insights for industry practices aimed at improving the quality and performance of latex-dipped goods.展开更多
In order to reduce the temperature difference caused by condensed water in vulcanized tire capsules,the flow field and temperature field inside vulcanized tire capsules were numerically simulated by setting three diff...In order to reduce the temperature difference caused by condensed water in vulcanized tire capsules,the flow field and temperature field inside vulcanized tire capsules were numerically simulated by setting three different intake angles based onvolume of fluid(VOF)multiphase flow model.When the intake air is blown to the upper and lower tire sides of the vulcanized capsule at 18°from the horizontal direction,the distribution of condensed water at the bottom of the capsule changes obviously due to the effect of vorticity flow,and the distribution along the wall is more uniform.When the inlet air is blown down the tire side,the condensate is most evenly distributed along the wall,and the maximum temperature difference drops to 9.5℃.The results show that changing the distribution of condensed water by adjusting the proper intake angle can effectively reduce the temperature difference of condensed water in vulcanized capsules.展开更多
基金the Ministry of Agriculture and Rural Affairs of Chinathe Department of Science and Technology of the Hainan Province for their support+2 种基金financially supported by the National Key R&D Program of China(No. 2022YFD2301201)Hainan Province Science and Technology Special Fund (No. ZDYF2024XDNY284)Earmarked Fund for China Agriculture Research System (No.CARS-33-JG1)
文摘The thioacetamide derivative(TD)-composite preservation system(TDCPS)exhibits superior preservation effects on natural rubber latex(NRL)and significantly enhances its vulcanization efficiency and mechanical properties.This study primarily investigated the principal chemical groups and mechanism of action of TDCPS in promoting NRL vulcanization through a comparative analysis.The results indicated that the key functional groups(thioamide and pyridine)in TDCPS synergistically accelerated crosslinking,reducing the vulcanization time by 41.18%compared to the high-ammonia(HA)preservation system.At an optimal TDCPS dosage of 5 mmol·L^(−1),vulcanized films achieved a tensile strength of 34.18 MPa,with a sulfur content of 1.5 phr further improving the strength by 42.26%.TD outperformed the conventional accelerators 2-imidazolidinethione(ETU)and 3-hydroxypyridine(3-Hp)in promoting the crosslinking density and mechanical performance while eliminating ammonia-related environmental risks.This eco-friendly system demonstrates the industrial potential for sustainable rubber production.
基金supported by Mahidol University(Fundamental Fund:fiscal year 2024 by the National Science Research and Innovation Fund(NSRF),FF-078/2567)Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team of National Tropical Agricultural Science Center(No.CATASCXTD202401)the National Research Council of Thailand(NRCT)via the Royal Golden Jubilee Ph.D.Program(No.PHD/0150/2560)。
文摘This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber(NR)latex-dipped products.Utilizing sulfur vulcanization,known for its operational simplicity and cost-effectiveness,we examine its ability to enhance product elasticity and mechanical strength through various sulfidic bond formations such as mono-,di-,and polysulfidic bonds.Different vulcanization systems and sulfur contents were evaluated for their influence on the mechanical attributes of latex films,employing three types of NR latex,namely concentrated NR(CNR),deproteinized NR(DPNR),and small rubber particle NR(SRP),each representing distinct non-rubber components(NRCs).The study utilized advanced atomic force microscopy(AFM)equipped with PeakForce Quantitative Nanomechanical Mapping(QNM)to visualize and measure Young’s modulus distribution across the film of pre-vulcanized latex.Our findings reveal that films by CNR processed using the conventional vulcanization(CV)system exhibited enhanced tensile strength and elongation at break.It even showed a lower crosslink density than those processed using the efficient vulcanization(EV)system.Interestingly,DPNR films showed a more uniform distribution of Young’s modulus,correlating well with their superior mechanical strength.In contrast,SRP films showed excessive network structure formation in the particles due to accelerated vulcanization rates,hampering subsequent post-vulcanization interparticle crosslinking in film formation and remaining more rigid.The overall results Illustrate clearly that the ultimate mechanical properties of the latex films are strongly dependent on the type of sulfidic bonds formed.This research reveals further the very intricate relationship between the vulcanization methods,sulfur content,and latex type in optimizing the mechanical performance of NR latex products.It provides valuable insights for industry practices aimed at improving the quality and performance of latex-dipped goods.
基金supported in part by the National Natural Science Foundation of China(No.52176040)Shandong Natural Science Foundation(No.ZR2021ME161)the Science and Technology SMES Innovation Ability Improvement of Shandong Province(No.2023TSGC0290)。
文摘In order to reduce the temperature difference caused by condensed water in vulcanized tire capsules,the flow field and temperature field inside vulcanized tire capsules were numerically simulated by setting three different intake angles based onvolume of fluid(VOF)multiphase flow model.When the intake air is blown to the upper and lower tire sides of the vulcanized capsule at 18°from the horizontal direction,the distribution of condensed water at the bottom of the capsule changes obviously due to the effect of vorticity flow,and the distribution along the wall is more uniform.When the inlet air is blown down the tire side,the condensate is most evenly distributed along the wall,and the maximum temperature difference drops to 9.5℃.The results show that changing the distribution of condensed water by adjusting the proper intake angle can effectively reduce the temperature difference of condensed water in vulcanized capsules.