The atmosphere is an evolutionary agent essential to the shaping of a planet,while in oceanic science and daily life,liquids are commonly seen.In this paper,we investigate a generalized variable-coefficient Korteweg-d...The atmosphere is an evolutionary agent essential to the shaping of a planet,while in oceanic science and daily life,liquids are commonly seen.In this paper,we investigate a generalized variable-coefficient Korteweg-de Vriesmodified Korteweg-de Vries equation for the atmosphere,oceanic fluids and plasmas.With symbolic computation,beginning with a presumption,we work out certain scaling transformations,bilinear forms through the binary Bell polynomials and our scaling transformations,N solitons(with N being a positive integer)via the aforementioned bilinear forms and bilinear auto-Bäcklund transformations through the Hirota method with some solitons.In addition,Painlevé-type auto-Bäcklund transformations with some solitons are symbolically computed out.Respective dependences and constraints on the variable/constant coefficients are discussed,while those coefficients correspond to the quadratic-nonlinear,cubic-nonlinear,dispersive,dissipative and line-damping effects in the atmosphere,oceanic fluids and plasmas.展开更多
基金the National Natural Science Foundation of China(Grant No.11871116)the Fundamental Research Funds for the Central Universities of China(Grant No.2019XD-A11)the BUPT Innovation and Entrepreneurship Support Program,Beijing University of Posts and Telecommunications,and the National Scholarship for Doctoral Students of China.
文摘The atmosphere is an evolutionary agent essential to the shaping of a planet,while in oceanic science and daily life,liquids are commonly seen.In this paper,we investigate a generalized variable-coefficient Korteweg-de Vriesmodified Korteweg-de Vries equation for the atmosphere,oceanic fluids and plasmas.With symbolic computation,beginning with a presumption,we work out certain scaling transformations,bilinear forms through the binary Bell polynomials and our scaling transformations,N solitons(with N being a positive integer)via the aforementioned bilinear forms and bilinear auto-Bäcklund transformations through the Hirota method with some solitons.In addition,Painlevé-type auto-Bäcklund transformations with some solitons are symbolically computed out.Respective dependences and constraints on the variable/constant coefficients are discussed,while those coefficients correspond to the quadratic-nonlinear,cubic-nonlinear,dispersive,dissipative and line-damping effects in the atmosphere,oceanic fluids and plasmas.