期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
Vortex-Induced Vibration Characteristics of an Underwater Manipulator in Pulsating Flow
1
作者 Yongqi Li Xia Liu +3 位作者 Zongqiang Li Derong Duan Senliang Dai Hui Zhang 《哈尔滨工程大学学报(英文版)》 2026年第1期63-81,共19页
Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response ... Vortex-induced vibration(VIV)of an underwater manipulator in pulsating flow presents a notable engineering problem in precise control due to the velocity variation in the flow.This study investigates the VIV response of an underwater manipulator subjected to pulsating flow,focusing on how different postures affect the behavior of the system.The effects of pulsating parameters and manipulator arrangement on the hydrodynamic coefficient,vibration response,motion trajectory,and vortex shedding behaviors were analyzed.Results indicated that the cross flow vibration displacement in pulsating flow increased by 32.14%compared to uniform flow,inducing a shift in the motion trajectory from a crescent shape to a sideward vase shape.In the absence of interference between the upper and lower arms,the lift coefficient of the manipulator substantially increased with rising pulsating frequency,reaching a maximum increment of 67.0%.This increase in the lift coefficient led to a 67.05%rise in the vibration frequency of the manipulator in the in-line direction.As the pulsating amplitude increased,the drag coefficient of the underwater manipulator rose by 36.79%,but the vibration frequency in the cross-flow direction decreased by 56.26%.Additionally,when the upper and lower arms remained in a state of mutual interference,the cross-flow vibration amplitudes of the upper and lower arms were approximately 1.84 and 4.82 times higher in a circular-elliptical arrangement compared to an elliptical-circular arrangement,respectively.Consequently,the flow field shifted from a P+S pattern to a disordered pattern,disrupting the regularity of the motion trajectory. 展开更多
关键词 Underwater manipulator Pulsating flow vortex-induced vibration TRAJECTORY Overlapping mesh method
在线阅读 下载PDF
Experimental and Numerical Study on Vortex-Induced Vibration Suppression by Helical Strakes on Subsea Pipelines 被引量:1
2
作者 Jinhong Yu Chen An +3 位作者 Yu Zhang Junkai Feng Zexin Xu Frank Lim 《哈尔滨工程大学学报(英文版)》 2025年第3期580-592,共13页
A numerical simulation analysis is conducted to examine the unsteady hydrodynamic characteristics of vortex-induced vibration(VIV)and the suppression effect of helical strakes on VIV in subsea pipelines.The analysis u... A numerical simulation analysis is conducted to examine the unsteady hydrodynamic characteristics of vortex-induced vibration(VIV)and the suppression effect of helical strakes on VIV in subsea pipelines.The analysis uses the standard k−εturbulence model for 4.5-and 12.75-inch pipes,and its accuracy is verified by comparing the results with large-scale hydrodynamic experiments.These experiments are designed to evaluate the suppression efficiency of VIV with and without helical strakes,focusing on displacement and drag coefficients under different flow conditions.Furthermore,the influence of important geometric parameters of the helical strakes on drag coefficients and VIV suppression efficiency at different flow rates is compared and discussed.Numerical results agree well with experimental data for drag coefficient and vortex shedding frequency.Spring-pipe self-excited vibration experimental tests reveal that the installation of helical strakes substantially reduces the drag coefficient of VIV within a certain flow rate range,achieving suppression efficiencies exceeding 90%with strake heights larger than 0.15D.Notably,the optimized parameter combination of helical strakes,with a pitch of 15D,a fin height of 0.2D,and 45°edge slopes,maintains high suppression efficiency,thereby exhibiting superior performance.This study provides a valuable reference for the design and application of helical strakes and VIV suppression in subsea engineering. 展开更多
关键词 Subsea pipeline Helical strakes vortex-induced vibration Lift-drag coefficient SUPPRESSION
在线阅读 下载PDF
Vortex-Induced Vibration Response Characteristics of Deep-Sea Mining Risers Considering Abrasion Damage 被引量:1
3
作者 LIU Yu WANG Chang-zi +1 位作者 JIANG Yu-feng ZHU Yan 《China Ocean Engineering》 2025年第5期806-821,共16页
A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion... A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations. 展开更多
关键词 deep-sea mining riser vortex-induced vibration(VIV) response characteristics abrasion damage effective tension
在线阅读 下载PDF
Effects of horizontal splitter plates on the vortex-induced vibration and aerostatic characteristics of twin separated parallel decks for a rail-cum-road bridge
4
作者 HE Xu-hui YANG Jia-feng +2 位作者 LIU Lu-lu ZOU Yun-feng HE Jing 《Journal of Central South University》 2025年第3期1024-1043,共20页
Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated d... Installing the splitter plates is a passive aerodynamic solution for eliminating vortex-induced vibration (VIV). However, the influences of splitter plates on the VIV and aerostatic performances are more complicated due to aerodynamic interference between highway and railway decks. To study the effects of splitter plates, wind tunnel experiments for measuring VIV and aerostatic forces of twin decks under two opposite flow directions were conducted, while the surrounding flow and wind pressure of static twin decks with and without splitter plates are numerically simulated. The results showed that the incoming flow direction affects the VIV response and aerostatic coefficients. The highway deck has poor vertical and torsional VIV, and the VIV region and amplitude are different under different directions. While the railway deck only has vertical VIV when located upstream. The splitter plates can impede the process of vortex generation, shedding and impinging at the gap between twin deck, and significantly reducing the surface fluctuating pressure coefficient, thus effectively suppressing the VIV of twin decks. While, the splitter plates hurt the upstream deck regarding static wind stability and have little effect on the downstream deck. The splitter plates of appropriate width are recommended to improve VIV performances in twin parallel bridges. 展开更多
关键词 splitter plates vortex-induced vibration(VIV) aerostatic characteristic wind tunnel test twin parallel decks the rail-cum-road bridges computational fluid dynamics
在线阅读 下载PDF
Experimental Study on Vortex-Induced Vibration of Underwater Manipulator Under Shear Flow
5
作者 Senliang Dai Derong Duan +3 位作者 Xin Liu Huifang Jin Hui Zhang Xuefeng Yang 《哈尔滨工程大学学报(英文版)》 2025年第5期959-969,共11页
The position deviation of the underwater manipulator generated by vortex-induced vibration(VIV)in the shear flow increases relative to that in the uniform flow.Thus,this study established an experimental platform to i... The position deviation of the underwater manipulator generated by vortex-induced vibration(VIV)in the shear flow increases relative to that in the uniform flow.Thus,this study established an experimental platform to investigate the vibration characteristics of the underwater manipulator under shear flow.The vibration response along the manipulator was obtained and compared with that in the uniform flow.Results indicated that the velocity,test height,and flow field were the main factors affecting the VIV of the underwater manipulator.With the increase in the reduced velocity(U_(r)),the dimensionless amplitudes increased rapidly in the in-line(IL)direction with a maximum of 0.13D.The vibration responses in the cross-flow(CF)and IL directions were concentrated at positions 2,3 and positions 1,2,with peak values of 0.46 and 0.54 mm under U_(r)=1.54,respectively.In addition,the vibration frequency increased with the reduction of velocity.The dimensionless dominant frequency in the CF and IL directions varied from 0.39-0.80 and 0.35-0.64,respectively.Moreover,the ratio of the CF and IL directions was close to 1 at a lower U_(r).The standard deviation of displacement initially increased and then decreased as the height of the test location increased.The single peak value of the standard deviation showed that VIV presented a single mode.Compared with the uniform flow,the maximum and average values of VIV displacement increased by 104%and 110%under the shear flow,respectively. 展开更多
关键词 Underwater manipulator Shear flow vortex-induced vibration Spectral analysis Vibration response
在线阅读 下载PDF
Numerical simulation of vortex-induced vibration of deepwater drilling riser based on discrete vortex method
6
作者 Yan-Bin Wang Hong-Chuan Zhao +1 位作者 De-Li Gao Rui Li 《Petroleum Science》 2025年第5期2042-2061,共20页
Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce f... Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser. 展开更多
关键词 Deepwater drilling riser vortex-induced vibration Discrete vortex method Numerical simulation VIV suppression
原文传递
A Simplified Nonlinear Model of Vertical Vortex-Induced Force on Box Decks for Predicting Stable Amplitudes of Vortex-Induced Vibrations 被引量:11
7
作者 Le-Dong Zhu Xiao-Liang Meng +1 位作者 Lin-Qing Du Ming-Chang Ding 《Engineering》 SCIE EI 2017年第6期854-862,共9页
Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on t... Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy. 展开更多
关键词 Box deck of bridge Vertical vortex-induced vibration Vertical vortex-induced force Simplified nonlinear model Wind-tunnel test Large-scale sectional model Synchronous measurement of force and vibration
在线阅读 下载PDF
Hydrodynamics of A Flexible Riser Undergoing the Vortex-Induced Vibration at High Reynolds Number 被引量:2
8
作者 REN Tie ZHANG Meng-meng +1 位作者 FU Shi-xiao SONG Lei-jian 《China Ocean Engineering》 SCIE EI CSCD 2018年第5期570-581,共12页
This study proposed a method to obtain hydrodynamic forces and coefficients for a flexible riser undergoing the vortex-induced vibration(VIV), based on the measured strains collected from the scale-model testing with ... This study proposed a method to obtain hydrodynamic forces and coefficients for a flexible riser undergoing the vortex-induced vibration(VIV), based on the measured strains collected from the scale-model testing with the Reynolds numbers ranging from 1.34 E5 to 2.35 E5. The riser is approximated as a tensioned spatial beam, and an inverse method based on the FEM of spatial beam is adopted for the calculation of hydrodynamic forces in the cross flow(CF) and inline(IL) directions. The drag coefficients and vortex-induced force coefficients are obtained through the Fourier Series Theory. Finally, the hydrodynamic characteristics of a flexible riser model undergoing the VIV in a uniform flow are carefully investigated. The results indicate that the VIV amplifies the drag coefficient, and the drag coefficient does not change with time when the CF VIV is stable. Only when the VIVs in the CF and IL directions are all steady vibrations, the vortex-induced force coefficients keep as a constant with time, and under"lock-in" condition, whether the added-mass coefficient changes with time or not, the oscillation frequency of the VIV keeps unchanged. It further shows that the CF excitation coefficients at high frequency are much smaller than those at the dominant frequency, while, the IL excitation coefficients are in the same range. The axial distributions of the excitation and damping region at the dominant frequency and high frequency are approximately consistent in the CF direction, while, in the IL direction, there exists a great difference. 展开更多
关键词 flexible riser vortex-induced vibration vortex-induced force excitation coefficient added-mass coefficient drag coefficient
在线阅读 下载PDF
Numerical Prediction of Vortex-Induced Vibrations on Top Tensioned Riser in Consideration of Internal Flow 被引量:16
9
作者 郭海燕 李效民 刘晓春 《China Ocean Engineering》 SCIE EI 2008年第4期675-682,共8页
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derive... In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn. 展开更多
关键词 top tensioned riser TTR) internal flow vortex-induced vibration V/V) dynamic characteristics dynamic response
在线阅读 下载PDF
Experi mental Study on Vortex-Induced Vibrations of Submarine Pipeline near Seabed Boundary in Ocean Currents 被引量:15
10
作者 杨兵 高福平 +1 位作者 吴应湘 李东晖 《China Ocean Engineering》 SCIE EI 2006年第1期113-121,共9页
Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic ... Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand (1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex-induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of Vr and the dimensionless amplitude ratio Amax/D become larger with the decrease of the gap-to-diameter ratio e/D, Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while tire pipeline frequency responses are affected slightly by the stability parameter. 展开更多
关键词 submarine pipeline vortex-induced vibrations ocean current SEABED
在线阅读 下载PDF
The Effect of Internal Fluid on the Response of Vortex-Induced Vibration of Marine Risers 被引量:16
11
作者 郭海燕 王元斌 傅强 《海洋工程:英文版》 2004年第1期11-20,共10页
Based on Iwan′s wake oscillator model developed with the classical van der Pol equation, the differential equation for the response of the vortex-induced vibration (VIV) of the riser considering the effect of the int... Based on Iwan′s wake oscillator model developed with the classical van der Pol equation, the differential equation for the response of the vortex-induced vibration (VIV) of the riser considering the effect of the internal flowing fluid and the external marine environmental condition is derived. The effect of the internal flowing fluid on the response of VIV of the riser is studied by means of the Finite Element Method. The results show that the effect of the internal fluid velocity on the VIV of the riser is strong when the natural frequency of the riser is close to the vortex shedding frequency. In addition, the increase of the top tension can decrease the sensitivity of the riser to the internal fluid velocity. 展开更多
关键词 marine riser internal fluid vortex-induced vibration dynamic response
在线阅读 下载PDF
Fatigue Life Assessment of Top Tensioned Risers Under Vortex-Induced Vibrations 被引量:11
12
作者 LI Xiaomin GUO Haiyan MENG Fanshun 《Journal of Ocean University of China》 SCIE CAS 2010年第1期43-47,共5页
The fatigue life of top tensioned risers under vortex-induced vibrations (VIVs) with consideration of the effect of internal flowing fluid on the riser is analyzed in the time domain.The long-term stress histories of ... The fatigue life of top tensioned risers under vortex-induced vibrations (VIVs) with consideration of the effect of internal flowing fluid on the riser is analyzed in the time domain.The long-term stress histories of the riser under VIVs are calculated and the mean stresses,the number of stress cycles and amplitudes are determined by the rainflow counting method.The Palmgren-Miner rule for cumulative damage theory with a specified S-N curve is used to estimate the fatigue life of the riser.The corresponding numerical programs numerical simulation of vortex-induced vibrations (NSVIV) which can be used to calculate the VIV response and fatigue life of the riser are compiled.Finally the influences of the riser's parameters such as flexural rigidity,top tension and internal flow velocity on the fatigue life of the riser are analyzed in detail and some conclusions are drawn. 展开更多
关键词 top tensioned riser (TTR) internal flow vortex-induced vibration (VIV) fatigue life
在线阅读 下载PDF
Experimental Study on Coupled Cross-Flow and in-Line Vortex-Induced Vibration of Flexible Risers 被引量:9
13
作者 郭海燕 娄敏 《China Ocean Engineering》 SCIE EI 2008年第1期123-129,共7页
In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flo... In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features. 展开更多
关键词 flexible riser vortex-induced vibration cross-flow vibration in-line vibration
在线阅读 下载PDF
Effect of Internal Flow on Vortex-Induced Vibration of Submarine Free Spanning Pipelines 被引量:10
14
作者 娄敏 丁坚 +1 位作者 郭海燕 董晓林 《China Ocean Engineering》 SCIE EI 2005年第1期147-154,共8页
At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect ... At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect of internal and external fluid with the free span. In this paper, combining Iwan's wake oscillator model with the differential equation derived for the dynamic response of submarine free spanning pipelines with inclusion of internal flow, the pipe-fluid coupling equations are developed to investigate the effect of internal flow on the vortex-induced vibration of the free spans. The finite element approximation is implemented to derive the matrix equations of equilibrium. The Newmark method combined with simple iteration is used to solve the system of equations. The results indicate that the internal fluid flow may cause the shift of resonance band to the lower frequency and a slight decrease in the peak value; the effect will be more pronounced with the increase of the span length and can be weakened in the presence of the axial tension. 展开更多
关键词 vortex-induced vibration internal flow free span submarine pipelines
在线阅读 下载PDF
Vortex-Induced Vibrations of A Long Flexible Cylinder in Linear and Exponential Shear Flows 被引量:5
15
作者 GAO Yun YANG Bin +2 位作者 ZOU Li ZONG Zhi ZHANG Zhuang-zhuang 《China Ocean Engineering》 SCIE EI CSCD 2019年第1期44-56,共13页
A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to l... A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder. 展开更多
关键词 vortex-induced vibration LONG FLEXIBLE CYLINDER WAKE oscillator model EXPONENTIAL shear flow TRANSFERRED energy
在线阅读 下载PDF
The prediction on in-line vortex-induced vibration of slender marine structures 被引量:7
16
作者 Wan-Hai Xu Xi-Feng Gao Jie Du 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1303-1308,共6页
The in-line (IL) vortex-induced vibration (VIV) that occurs frequently in ocean engineering may cause severe fatigue damage in slender marine structures. To the best knowledge of the authors, in existing literatur... The in-line (IL) vortex-induced vibration (VIV) that occurs frequently in ocean engineering may cause severe fatigue damage in slender marine structures. To the best knowledge of the authors, in existing literatures, there is no efficient analytical model for predicting pure IL VIV. In this paper, a wake oscillator model capable of analyzing the IL VIV of slender marine structures has been developed. Two different kinds of van der Pol equations are used to describe the near wake dynamics related to the fluctuating nature of symmetric vortex shedding in the first excitation region and alternate vortex shedding in the second one. Some comparisons are carried out between the present model results and experimental data. It is found that many phenomena observed in experiments could be reproduced by the present wake oscillator model. 展开更多
关键词 vortex-induced vibration Wake oscillatormodel IN-LINE Slender marine structures
在线阅读 下载PDF
Influence of aerodynamic configuration of a streamline box girder on bridge flutter and vortex-induced vibration 被引量:13
17
作者 Qi WANG Haili LIAO Mingshui LI Cunming MA 《Journal of Modern Transportation》 2011年第4期261-267,共7页
Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components ... Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components on flutter and vortex-induced vibration (VIV), more than 60 cases were tested through a 1:50 scale section model. The test results indicates that the aerodynamic configuration and accessory components of streamline box girders can signifi- cantly affect the wind-induced vibration of bridge, which is in good agreement with the experience of past researchers. From the tests carried out, it is observed that if the horizontal angle of the inclined web of the streamline box girder is below 16°, the critical flutter wind speed of bridge will increase remarkably, and the VIV will diminish. The test results also show that the 15° inclined web can restrain the formation of vortex near the tail, and consequently improve the performance of aerodynamic stability of long-span bridges. Finally, a new streamline box girder with 15° inclined web was presented and strongly recommended in the aerodynamic configuration design of long-span bridges. 展开更多
关键词 streamline box girder aerodynamic configuration wind tunnel test FLUTTER vortex-induced vibration
在线阅读 下载PDF
Numerical and Physical Investigation on Vortex-Induced Vibrations of Marine Risers 被引量:7
18
作者 郭海燕 娄敏 +1 位作者 董晓林 齐晓亮 《China Ocean Engineering》 SCIE EI 2006年第3期373-382,共10页
As a project supported by the National Natural Science Fotmdation of China, a model experiment on the vortex-induced vibration of practical risers transporting tluid in currents was conducted in the Physical Oceanogra... As a project supported by the National Natural Science Fotmdation of China, a model experiment on the vortex-induced vibration of practical risers transporting tluid in currents was conducted in the Physical Oceanography laboratory of ocean University of China in 2005. Because most of the offshore oil fields in China are in shallow water, the experiment was focused on the risers in shallow water. The similarity theory was used in the experiment to derive the experimental model from the practical model. Considering the internal flowing fluid and external marine environment, the dynamic response of the marine riser was measured. Corresponding numerical simulation was performed with the finite element method. Ccnaparisons were made between the results from the experiment and numerical simulation. 展开更多
关键词 marihe riser model test internaiflow vortex-induced vibrations
在线阅读 下载PDF
Suppression of Vortex-Induced Vibration by Fairings on Marine Risers 被引量:7
19
作者 KANG Yongtian XIAO Wensheng +2 位作者 WANG Quanbin ZHANG Dagang ZHAO Jun 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第2期298-306,共9页
Vortex-induced vibration is quite common during the operation of offshore risers or umbilical cables,commonly leading to serious damage to risers and reduced service life.Vortex-induced vibration of the offshore riser... Vortex-induced vibration is quite common during the operation of offshore risers or umbilical cables,commonly leading to serious damage to risers and reduced service life.Vortex-induced vibration of the offshore risers could be effectively suppressed by fairing devices.In this paper,a newly developed vortex-induced vibration fairing and large eddy simulation model of the FLUENT software were used for numerical analysis,experimental research and stimulating vortex-induced vibration at 0.1–2 ms^-1.The data of the numerical model with fairing was compared and analyzed to study the vortex shedding frequency at different Reynolds numbers and changes in drag and lift coefficients.The displacement state of 12 in risers with and without fairing was experimentally tested using a five degree-of-freedom balance.The vortex-induced vibration effect of the fairing was tested at different velocities.The result shows the drag reduction effect of the fairing is more obvious when the flow velocity is 0.4–1.2 ms^-1 and the maximum drag reduction reaches 55.6%when the flow velocity is 0.6 ms^-1.Additionally,the drag reduction effect was obvious when the flow velocity was greater than 1.3 ms^-1 and less than 0.3.The result indicates that the developed 12 in fairing,with good potential in engineering applications,has good vortex-induced vibration-suppression effects. 展开更多
关键词 vortex-induced vibration faring devices finite element analysis TESTING
在线阅读 下载PDF
Numerical Study on the Effect of Current Profiles on Vortex-Induced Vibrations in a Top-Tension Riser 被引量:4
20
作者 Bowen Fu Lu Zou Decheng Wan 《Journal of Marine Science and Application》 CSCD 2017年第4期473-479,共7页
In this paper, numerical simulations of vortex-induced vibrations in a vertical top-tension riser with a length-to-diameter ratio of 500 using our in-house code viv-FOAM-SJTU are presented. The time-dependent hydrodyn... In this paper, numerical simulations of vortex-induced vibrations in a vertical top-tension riser with a length-to-diameter ratio of 500 using our in-house code viv-FOAM-SJTU are presented. The time-dependent hydrodynamic forces on two-dimensional strips are obtained by solving the Navier-Stokes equations, which are, in turn, integrated into a finite-element structural model to obtain the riser deflections. The riser is discretized into 80 elements with its two ends set as pinned and 20 strips are located equidistant along the risers. Flow and structure are coupled by hydrodynamic forces and structural displacements. In order to study the effects of the shear rate, of the current profiles on the vortex-induced vibrations in the riser, vibrations, with varying shear rates, in both the in-line and cross-flow directions, are simulated. In addition to the time domain analysis, spectral analysis was conducted in both the temporal and spatial domains. Multi-mode vibration characteristics were observed in the riser. The relationship between dominant vibration mode number and the shear rate of current profiles is discussed. In general, the overall vibrations in the riser pipe include contributions from several modes and each mode persists over a range of shear rates. Moreover, the results suggest that with a larger shear rate the position of the maximum in-line time-averaged displacement will move closer to the end where the largest velocity is located. 展开更多
关键词 RISERS vortex-induced VIBRATION MULTI-MODAL VIBRATION STRIP theory computational fluid dynamics fluid-structure interaction
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部