The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-do...The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-domain impulse theory for subcavitating flow(σ=8.0)and cavitating flow(σ=3.0),and to quantify the distinct impact of individual vortex structures on the transient lift to appreciate the interplay among cavitation,flow structures,and vortex dynamics.The motion of the hydrofoil is set to pitch up clockwise with an almost constant rate from 0°to 15°and then back to 0°,for the Reynolds number,7.5×105,and the frequency,0.2 Hz,respectively.The results reveal that the presence of cavities delays the migration of the laminar separation bubble(LSB)from the trailing edge(TE)to the leading edge(LE),consequently postponing the hysteresis in the inflection of lift coefficients.The eventual stall under the sub-cavitation regime is the result of LSB bursting.While the instabilities within the leading-edge LSB induce the convection of cavitation-dominated vortices under the cavitation regime instead.Having validated the lift coefficients on the hydrofoil through the finite-domain impulse theory using the standard force expression,the Lamb vector integral emerges as the main contribution to the generation of unsteady lift.Moreover,the typical vortices’contributions to the transient lift during dynamic stall are accurately quantified.The analysis indicates that the clockwise leading-edge vortex(−LEV)contributes positively,while the counterclockwise trailing-edge vortex(+TEV)contributes negatively.The negative influence becomes particularly pronounced after reaching the peak of total lift,as the shedding of the concentrated wake vortex precipitates a sharp decline due to a predominant negative lift contribution from the TEV region.Generally,the vortices’contribution is relatively modest in sub-cavitating flow,but it is notably more significant in the context of incipient cavitating flow.展开更多
The vortex dynamics after the initial ring dark solitons in two-component ultracold Rydberg atomic systems have been investigated.The two parameters characterizing the Rydberg long-range interaction—namely,the Rydber...The vortex dynamics after the initial ring dark solitons in two-component ultracold Rydberg atomic systems have been investigated.The two parameters characterizing the Rydberg long-range interaction—namely,the Rydberg strength and the blockade radius—along with the initial depth,are identified as the main factors that affect the vortex dynamics.In the absence of Rydberg soft-core potential and spin-orbit coupling,the late vortex dipoles move along x-or y-axis first.However,this work demonstrates that,with certain Rydberg strength and blockade radius,the late vortex dipoles move towards the edge at an oblique angle to the coordinate axes,and it reveals that the Rydberg nonlocal nonlinear interaction shortens the lifetime of late vortices.When the intra-component and inter-component Rydberg strengths are different,the backgrounds of the two components gradually complement each other,and the lifetime of late vortices is significantly shortened.The presented results show that the Rydberg dressing breaks the rule that the initial average depth determines the number and paths of vortices.The motion features of vortex dipoles in the ultracold Rydberg atomic system have been ascertained,and their directions of movement can be predicted to some degree based on the rotation directions and initial positions of the vortices.展开更多
The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model...The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.展开更多
The transition process within a Laminar Separation Bubble(LSB)that formed on a compressor blade surface was investigated using Large Eddy Simulations(LESs)at a Reynolds number of 1.5×10^(5) and incidence angles o...The transition process within a Laminar Separation Bubble(LSB)that formed on a compressor blade surface was investigated using Large Eddy Simulations(LESs)at a Reynolds number of 1.5×10^(5) and incidence angles of 0°,+3°,and+5°.The vortex dynamics in the separated shear layers were compared at various incidence angles and its effects on the loss generation were clarified through entropy analysis.Results showed that transition onset,which was accurately identified by the Linear Stability Theory(LST),was significantly promoted at the increased incidence angle.As such,the development of LSB was suppressed and the relative role of viscous instability played in the transition process was weakened.At the incidence angle of 0°,two-dimensional spanwise vortices detached from the blade surface and roiled up periodically,which were further stretched and eventually evolved into large-scale hairpin vortices.As time passed,the fully developed hairpin vortices broke down into small-scale eddies.Meanwhile,the flow near the wall reversely ejected into the outer separated shear layers and a sweeping process happened subsequently,forcing the separated shear layers to reattach and accelerating the generation of turbulent fluctuations.By comparison,the strength of vortex rolling-up was weakened at higher incidence angles,and the vortex pairing and breakdown of large-scale vortices were less pronounced.Therefore,the level of turbulent fluctuations that generated in the separated shear layers was reduced.Detailed entropy analysis showed that the turbulent dissipation effect related to the Reynolds shear stresses determined the largest amount of positive entropy generation,which declined to a lower level as the incidence angle increased from 0°to+5°.Correspondingly,the profile loss was reduced by 50.4%.展开更多
In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭ...In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭxkuε)xj+ε^2^-b(x)(1-|uε|^2)uε,x∈Ω,and conclude that each vortex,bj(t)(j=1,2,…,N)satisfies dt^-dbj(t)=-(a(bj(t))^-a1k(bj(t))Эxka(bj(t)),a(aj(t))^-a2k(bj(t))Эxka(bj(t))),where a(x)=√a11a22-a12^2. We prove that all the vortices are pinned together to the critical points of a(x). Furthermore, we prove that these critical points can not be the maximum points.展开更多
The fact that the staggered impeller of a double-suction centrifugal pump can effectively suppress pressure fluctuations has been proved by engineering practice,but the flow mechanism behind it is still not fully unde...The fact that the staggered impeller of a double-suction centrifugal pump can effectively suppress pressure fluctuations has been proved by engineering practice,but the flow mechanism behind it is still not fully understood.In this study,numerical simulations with a proof experiment were conducted,and the vortex dynamics analyses were performed using the newly developed rigid vorticity(Liutex)theory.The following valuable results are obtained:(1)In terms of the intuitive vortex structure,each blade of the impeller induces a trailing vortex rope with a strong rigid vorticity,which gradually evolves inside the volute casing with the rotation of the impeller.The trailing vortex ropes of the symmetric impeller are symmetrically distributed,while those of the staggered impeller present a staggered distribution,and the latter corresponds to a relatively lower rigid vorticity.(2)In terms of the correlation between the vortex and the pressure,the high rigid vorticity zone corresponds to the low-pressure zone.For a fixed point in the volute casing,there is a major“falling-rising”fluctuation in pressure as the symmetric vortex ropes transit it simultaneously,and a minor“falling-rising”fluctuation in pressure as the staggered vortex ropes transit it successively,corresponding to a lower peak-to-peak value of the pressure fluctuations.(3)In terms of the relation between the vortex and the velocity,the vortex ropes induced by the left and right impellers are counter-rotating and develop along the radial direction.This pattern results in high-speed zones at the middle part of the cross-section of the volute casing,both in the streamwise and radial directions,and contributes to velocity fluctuations due to the evolving vortex rope.However,the staggered distribution of vortex ropes can weaken the coupling of vortex pairs,thereby causing lower velocity and pressure pulsations,but can make the main frequency twice that of the symmetric impeller.This study enriches our physical knowledge by revealing the vortex dynamics mechanism of the staggered impeller of a double-suction centrifugal pump to suppress pressure fluctuations.展开更多
When a perpendicular magnetic field penetrates a thin slab of a type-Ⅱ superconductor it produces vortices,with one vortex per flux quantum,h/2e.The vortices interact repulsively and form an ordered array(Abrikosov l...When a perpendicular magnetic field penetrates a thin slab of a type-Ⅱ superconductor it produces vortices,with one vortex per flux quantum,h/2e.The vortices interact repulsively and form an ordered array(Abrikosov lattice)in clean systems,while strong disorder changes the lattice into a vortex glass.The collective vortex dynamics is extremely vulnerable to external perturbations.Consequently,although of great importance,experimental observation is limited.Here we investigate type-Ⅱ superconducting films(PdBi_(2)and NbSe_(2))with surface acoustic waves(SAWs)at mK temperature.When sweeping the magnetic field at an extremely slow rate,we observe a series of spikes in the attenuation and velocity of the SAW,on average separated in field by approximately Hc1.We propose the following scenario:The vortex-free region at the edges of the film produces an edge barrier across which the vortices can enter or leave.When the applied field changes,the induced supercurrents flowing along this edge region lowers this barrier until there is an instability.At that point,vortices avalanche into(or out of)the bulk and change the vortex crystal,suggested by the sharp jump in each such spike.The vortices then gradually relax to a new stable pinned configuration,leading to a~30 s relaxation after the jump.Our observation enriches the limited experimental evidence on the important topic of real-time vortex dynamics in superconductors.展开更多
Vortex dynamics,with the possibility of efficient flow control,is explored in this study based on the new introduced vortex definition and identification system of Liutex.With the six core elements of vortex identific...Vortex dynamics,with the possibility of efficient flow control,is explored in this study based on the new introduced vortex definition and identification system of Liutex.With the six core elements of vortex identification,including(1)absolute strength,(2)relative strength,(3)local rotational axis,(4)global rotational axis,(5)vortex core size and(6)vortex boundary,provided by the Liutex system,it is possible to numerically devise strategies,primarily by introducing additional source terms in Navier-Stokes equations,which we call Liutex force field model here,to control the vortex regions.Two methodologies of centripetal force model and counter-rotation force model are preliminarily investigated in a cavitating flow around two-dimensional Clark-Y hydrofoil.It is found that Liutex based models are capable of illustrating the vortex dynamics and possibly strengthening or weakening the vortices.展开更多
The merging of multiple vortices is a fundamental process of the dynamics of Earth's atmosphere and oceans. In this study, the interaction of like-signed vortices is analytically and numerically examined in a framewo...The merging of multiple vortices is a fundamental process of the dynamics of Earth's atmosphere and oceans. In this study, the interaction of like-signed vortices is analytically and numerically examined in a framework of two-dimensional inviscid barotropic flows. It is shown that barotropic vortex interaction turns out to be more intricate than simple merging scenarios often assumed in previous studies. Some particular configurations exist in which the vortex merging process is never complete despite strong interaction of like-signed vortices, regardless of the strengths or distances between the vortices.While the conditions for a complete vortex merging process introduced in this study appear to be too strict for most practical applications, this study suggests that careful criteria for vortex mergers should be properly defined when simulating the interaction of vortices, because the merging may not always result in a final enhanced circulation at the end of the interaction,as usually assumed in the literature.展开更多
We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation o...We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation of the theory and (iii) the assumptions and/or restrictions on the theory of Callegari and Ting (1978).We present highlights of an extension of the 1978 asymptotic theory:the analyses for core structures with axial variation.Making use of the physical insights gained from the analyses,we present a new derivation of the evolution equations for the core structure.The new one is simpler and straightforward and shows the physics clearly.展开更多
Hemodynamics plays a crucial role in the growth of an abdominal aortic aneurysm(AAA)and its possible rupture.Due to the serious consequences that arise from the aneurysm rupture,the ability to predict its evolution an...Hemodynamics plays a crucial role in the growth of an abdominal aortic aneurysm(AAA)and its possible rupture.Due to the serious consequences that arise from the aneurysm rupture,the ability to predict its evolution and the need for surgery are of primary importance in the medical field.Furthermore,the presence of intraluminal thrombus(ILT)strongly affects the evolution of the pathology.In this study,we analyzed the influence of hemodynamics on the growth and possible rupture of AAAs.Numerical investigations of pulsatile non-Newtonian blood flow were performed in six patient-specific AAAs reconstructed from diagnostic images,having different sizes and shapes,and with or without ILT.Wall shear stress and vorticity distribution in the bulge and their evolution during the cardiac cycle were analyzed.The results indicate that blood flow dynamics acts synergistically with atherosclerotic degeneration in the development of the disease.The high surface complexity and tortuosity of the aneurysms significantly affect the blood motion,and the presence of inflection in the aneurysm centerline has a noticeable effect on the vortex dynamics.Links between regions of slow recirculating flows,low values of time-averaged wall shear stress,high values of oscillatory shear index,and zones of ILT deposition were found.In the absence of ILT,possible thrombus accumulation areas and consequent aneurysm growth were identified.The findings of this study highlight the importance of hemodynamics in assessing the vulnerability of the aortic wall and underline the crucial role of patient-specific investigations in predicting the rupture of individual aneurysms.展开更多
Nonlinear interactions of vortex rings with a free surface are considered in an incompressible, ideal fluid using the vortex contour dynamics technique and the boundary integral equation method. The flow is axisymmetr...Nonlinear interactions of vortex rings with a free surface are considered in an incompressible, ideal fluid using the vortex contour dynamics technique and the boundary integral equation method. The flow is axisymmetric and the vorticity is linearly distributed in the vortex. Effects of the gravity and the surface tension as well as the initial geometric parameter of the vortex on the interaction process are investigated in considerable detail. The interaction process may be divided into three major stages: the vortex free-traveling stage, the collision stage, and the vortex stretching and rebounding stage. Time evolutions of both the vortex and free surface under various conditions are provided and analyzed. Two kinds of waves exist on the free surface during interaction. In a special case where the gravity and surface tension are very weak or the vortex is very strong, an electric-bulb-like 'cavity' is formed an the free surface and the vortex is trapped in the 'cavity' for quite a. long time, resulting in a large amount, of fluid above the mean fluid surface.展开更多
High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,...High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,and sample orientations.It is found that a curved Nb/PI film exhibits quite different superconducting transition and vortex dynamics compared to the flat Nb/Al2O3film.For the curved Nb/PI film,smooth superconducting transitions were obtained at low currents,while unexpected cascade structures were revealed in theρ(T)curves at high currents.We attribute this phenomenon to the gradient distribution of vortex density together with a variation of superconductivity along the curved film.In addition,reentrant superconductivity was induced in the curved Nb/PI thin film by properly choosing the measurement conditions.We attribute this effect to the vortex pinning from both in-plane vortices and out-of-plane vortices.This work reveals the complex transport properties of curved superconducting thin films,providing important insights for further theoretical investigations and practical developments of flexible superconductors.展开更多
Utilizing the dissipative Gross-Pitaevskii equation,we investigated the splitting dynamics of triply quantized vortices at finite temperature.Through linear perturbation analysis,we determined the excitation modes of ...Utilizing the dissipative Gross-Pitaevskii equation,we investigated the splitting dynamics of triply quantized vortices at finite temperature.Through linear perturbation analysis,we determined the excitation modes of these vortices across various dissipation parameters.We identified three unstable modes with p=2-,3-and 4-fold rotational symmetries,revealing a significant dynamic transition of the most unstable mode.That is,as the dissipation parameter increases the most unstable mode transitions from the p=2 mode to the p=3 mode.Throughout the entire range of dissipation parameters,the p=4 unstable mode is never the dominant mode.Subsequently,we performed nonlinear numerical simulations of the vortex splitting process.Under random perturbations we confirmed the dynamical transition,and under specific perturbations we confirmed the instability of the p=4 mode.Our findings on the finite temperature dependence of the splitting dynamics of triply quantized vortices are expected to be verifiable in experiments.展开更多
Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by cal...Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4 D-Var can be applied to control the trajectory of simulated tropical cyclones by producing "optimal" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously,and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4 D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation,which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4 D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.展开更多
The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags...The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags are chosen as the experimental parameters,while the Strouhal number,the reduced frequency and the Reynolds number are fixed.During the motion of the airfoil,the leading edge vortex,the reattached vortex and the secondary vortex are observed in the flow field.The leading edge vortex is found to be the main flow structure through the proper orthogonal decomposition.The increase of phase lag results in the increase of the leading edge velocity,which strongly influences the leading edge shear layer and the leading edge vortex.The plunging motion contributes to the development of the leading edge shear layer,while the pitching motion is the key reason for instability of the leading edge shear layer.It is also found that a certain increase of phase lag,around 34.15°in this research,can increase the airfoil lift.展开更多
The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are iden...The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are identified.One is nonlinear relation between the thrust and the area moment of plate for lower area moment region and the other is linear relation for larger area moment region.The tendency of the power variation with the area moment is reasonably similar to the thrust behavior and the efficiency decreases gradually as the area moment increases.As the mechanism of the dynamic properties is associated with the evolution of vortical structures around the plate,the formation and evolution of vortical structures are investigated and the effects of the plate shape,plate area,Strouhal number and Reynolds number on the vortical structures are analyzed.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to flapping locomotion.展开更多
The flow around a square cylinder with a synthetic jet positioned at the rear surface is numerically investigated with the unsteady Reynolds-averaged Navier-Stokes(URANS)method.Instead of the typical sinusoidal wave,a...The flow around a square cylinder with a synthetic jet positioned at the rear surface is numerically investigated with the unsteady Reynolds-averaged Navier-Stokes(URANS)method.Instead of the typical sinusoidal wave,a bi-frequency signal is adopted to generate the synthetic jet.The bi-frequency signal consists of a basic sinusoidal wave and a high-frequency wave.Cases with various amplitudes of the high-frequency component are simulated.It is found that synthetic jets actuated by bi-frequency signals can realize better drag reduction with lower energy consumption when appropriate parameter sets are applied.A new quantity,i.e.,the actuation efficiency Ae,is used to evaluate the controlling efficiency.The actuation efficiency Ae reaches its maximum of 0.2668 when the amplitude of the superposed high-frequency signal is 7.5%of the basic signal.The vortex structures and frequency characteristics are subsequently analyzed to investigate the mechanism of the optimization of the bi-frequency signal.When the synthetic jet is actuated by a single-frequency signal with a characteristic velocity of 0.112 m/s,the wake is asymmetrical.The alternative deflection of vortex pairs and the peak at half of the excitation frequency in the power spectral density(PSD)function are detected.In the bi-frequency cases with the same characteristic velocity,the wake gradually turns to be symmetrical with the increase in the amplitude of the high-frequency component.Meanwhile,the deflection of the vortex pairs and the peak at half of the excitation frequency gradually disappear as well.展开更多
Effects of Reynolds(Re)number and Schmidt(Sc)number on the flow structures and variable density mixing are numerically investigated through the canonical shock cylindrical bubble interaction.By determining the viscosi...Effects of Reynolds(Re)number and Schmidt(Sc)number on the flow structures and variable density mixing are numerically investigated through the canonical shock cylindrical bubble interaction.By determining the viscosity and diffusivity within a wide range,the controlling parameters,total vortex circulation,and compression rate,are conservative under a broad range of Re and Sc numbers(Re≈10^(3)-10^(5)and Sc≈0.1-5)in the same shock Mach(Ma)number condition(Ma=2.4).As for the Re number effect,the circulation of secondary baroclinic vorticity(SBV),induced by the main vortex centripetal acceleration,is observed to be higher in high Re number and vice versa.Based on the vorticity transport equation decomposition,a growth-inhibition vorticity dynamics balance mechanism is revealed:the vorticity viscous term grows synchronously with baroclinic production to inhibit SBV production in low Re number.By contrast,the viscous term terminates the baroclinic term with a time lag in high Re number,leading to the SBV production.Since the SBV reflects the local stretching enhancement based on the advection-diffusion equation,mixing is influenced by the Sc number in a different behavior if different Re numbers are considered.The time-averaged variable density mixing rate emerges a scaling law with Sc number asχ^(∗)=β·Sc^(−α),where the coefficientβ∼Re−0.2 and the scaling exponentα∼Re−0.385.The understanding of Re number and Sc number effect on variable density mixing provides an opportunity for mixing enhancement from the perspective of designing the viscosity and diffusivity of the fluid mixture.展开更多
A better understanding of the mixing behavior of excited turbulent mixing layers is critical to a number of aerospace applications.Previous studies of excited turbulent mixing layers focused on single frequency excita...A better understanding of the mixing behavior of excited turbulent mixing layers is critical to a number of aerospace applications.Previous studies of excited turbulent mixing layers focused on single frequency excitation or the excitation with fundamental and its second harmonic frequency.There is a lack of detailed studies on applying low and higher frequency excitation.In this study,we have performed large-eddy simulations of periodically excited turbulent mixing layers.The excitation consists of a fundamental frequency and its third harmonic.We have used phase-averaging to identify the vortex structure and strength in the mixing layer,and we have studied the vortex dynamics.Two different vortex paring mechanisms are observed depending on the phase shift between the two excitation frequencies.The influence of these two mechanisms on the mixing of a passive scalar is also studied.It is found that exciting the mixing layer with these low and high frequencies has initially an adverse influence on the mixing process;however,it improves the mixing further downstream of the splitter plate with the excitation using a phase shift ofΔφ=πshowing the best mixing performance.The present works shed lights on the fundamental vortex dynamics,and has great potential for aeronautical,automotive and combustion engineering applications.展开更多
基金supported by the National Science Foundation of China (Grant Nos.52279081,and 51839001).
文摘The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-domain impulse theory for subcavitating flow(σ=8.0)and cavitating flow(σ=3.0),and to quantify the distinct impact of individual vortex structures on the transient lift to appreciate the interplay among cavitation,flow structures,and vortex dynamics.The motion of the hydrofoil is set to pitch up clockwise with an almost constant rate from 0°to 15°and then back to 0°,for the Reynolds number,7.5×105,and the frequency,0.2 Hz,respectively.The results reveal that the presence of cavities delays the migration of the laminar separation bubble(LSB)from the trailing edge(TE)to the leading edge(LE),consequently postponing the hysteresis in the inflection of lift coefficients.The eventual stall under the sub-cavitation regime is the result of LSB bursting.While the instabilities within the leading-edge LSB induce the convection of cavitation-dominated vortices under the cavitation regime instead.Having validated the lift coefficients on the hydrofoil through the finite-domain impulse theory using the standard force expression,the Lamb vector integral emerges as the main contribution to the generation of unsteady lift.Moreover,the typical vortices’contributions to the transient lift during dynamic stall are accurately quantified.The analysis indicates that the clockwise leading-edge vortex(−LEV)contributes positively,while the counterclockwise trailing-edge vortex(+TEV)contributes negatively.The negative influence becomes particularly pronounced after reaching the peak of total lift,as the shedding of the concentrated wake vortex precipitates a sharp decline due to a predominant negative lift contribution from the TEV region.Generally,the vortices’contribution is relatively modest in sub-cavitating flow,but it is notably more significant in the context of incipient cavitating flow.
基金supported by the Natural Science Foundation of Hubei Province of China(Grant No.2025AFB370)。
文摘The vortex dynamics after the initial ring dark solitons in two-component ultracold Rydberg atomic systems have been investigated.The two parameters characterizing the Rydberg long-range interaction—namely,the Rydberg strength and the blockade radius—along with the initial depth,are identified as the main factors that affect the vortex dynamics.In the absence of Rydberg soft-core potential and spin-orbit coupling,the late vortex dipoles move along x-or y-axis first.However,this work demonstrates that,with certain Rydberg strength and blockade radius,the late vortex dipoles move towards the edge at an oblique angle to the coordinate axes,and it reveals that the Rydberg nonlocal nonlinear interaction shortens the lifetime of late vortices.When the intra-component and inter-component Rydberg strengths are different,the backgrounds of the two components gradually complement each other,and the lifetime of late vortices is significantly shortened.The presented results show that the Rydberg dressing breaks the rule that the initial average depth determines the number and paths of vortices.The motion features of vortex dipoles in the ultracold Rydberg atomic system have been ascertained,and their directions of movement can be predicted to some degree based on the rotation directions and initial positions of the vortices.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509178 and 51509177)the Natural Science Foundation of Tianjin City(Grant No.14JCYBJC22100)the Natural Science Foundation of Tianjin Education Commission(Grant No.2017KJ046)
文摘The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a ReynoldsAveraged Navier–Stokes(RANS) flow solver with a Volume of Fluid(VOF) surface capturing scheme(RANSVOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation,therefore, scour on the leeside of the breakwater.
基金co-supported by the National Natural Science Foundation of China(No.51836008)the National Science and Technology Major Project of China(No.2017-II-0010-0024)。
文摘The transition process within a Laminar Separation Bubble(LSB)that formed on a compressor blade surface was investigated using Large Eddy Simulations(LESs)at a Reynolds number of 1.5×10^(5) and incidence angles of 0°,+3°,and+5°.The vortex dynamics in the separated shear layers were compared at various incidence angles and its effects on the loss generation were clarified through entropy analysis.Results showed that transition onset,which was accurately identified by the Linear Stability Theory(LST),was significantly promoted at the increased incidence angle.As such,the development of LSB was suppressed and the relative role of viscous instability played in the transition process was weakened.At the incidence angle of 0°,two-dimensional spanwise vortices detached from the blade surface and roiled up periodically,which were further stretched and eventually evolved into large-scale hairpin vortices.As time passed,the fully developed hairpin vortices broke down into small-scale eddies.Meanwhile,the flow near the wall reversely ejected into the outer separated shear layers and a sweeping process happened subsequently,forcing the separated shear layers to reattach and accelerating the generation of turbulent fluctuations.By comparison,the strength of vortex rolling-up was weakened at higher incidence angles,and the vortex pairing and breakdown of large-scale vortices were less pronounced.Therefore,the level of turbulent fluctuations that generated in the separated shear layers was reduced.Detailed entropy analysis showed that the turbulent dissipation effect related to the Reynolds shear stresses determined the largest amount of positive entropy generation,which declined to a lower level as the incidence angle increased from 0°to+5°.Correspondingly,the profile loss was reduced by 50.4%.
基金supported by the National Natural Science Foundation of China(10471050)the National 973 Project of China (2006CB805902)+1 种基金University Special Research Fund for Ph.DProgram (20060574002)Guangdong Provincial Natural Science Foundation (7005795, 031495)
文摘In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭxkuε)xj+ε^2^-b(x)(1-|uε|^2)uε,x∈Ω,and conclude that each vortex,bj(t)(j=1,2,…,N)satisfies dt^-dbj(t)=-(a(bj(t))^-a1k(bj(t))Эxka(bj(t)),a(aj(t))^-a2k(bj(t))Эxka(bj(t))),where a(x)=√a11a22-a12^2. We prove that all the vortices are pinned together to the critical points of a(x). Furthermore, we prove that these critical points can not be the maximum points.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U22A20238,52209117).
文摘The fact that the staggered impeller of a double-suction centrifugal pump can effectively suppress pressure fluctuations has been proved by engineering practice,but the flow mechanism behind it is still not fully understood.In this study,numerical simulations with a proof experiment were conducted,and the vortex dynamics analyses were performed using the newly developed rigid vorticity(Liutex)theory.The following valuable results are obtained:(1)In terms of the intuitive vortex structure,each blade of the impeller induces a trailing vortex rope with a strong rigid vorticity,which gradually evolves inside the volute casing with the rotation of the impeller.The trailing vortex ropes of the symmetric impeller are symmetrically distributed,while those of the staggered impeller present a staggered distribution,and the latter corresponds to a relatively lower rigid vorticity.(2)In terms of the correlation between the vortex and the pressure,the high rigid vorticity zone corresponds to the low-pressure zone.For a fixed point in the volute casing,there is a major“falling-rising”fluctuation in pressure as the symmetric vortex ropes transit it simultaneously,and a minor“falling-rising”fluctuation in pressure as the staggered vortex ropes transit it successively,corresponding to a lower peak-to-peak value of the pressure fluctuations.(3)In terms of the relation between the vortex and the velocity,the vortex ropes induced by the left and right impellers are counter-rotating and develop along the radial direction.This pattern results in high-speed zones at the middle part of the cross-section of the volute casing,both in the streamwise and radial directions,and contributes to velocity fluctuations due to the evolving vortex rope.However,the staggered distribution of vortex ropes can weaken the coupling of vortex pairs,thereby causing lower velocity and pressure pulsations,but can make the main frequency twice that of the symmetric impeller.This study enriches our physical knowledge by revealing the vortex dynamics mechanism of the staggered impeller of a double-suction centrifugal pump to suppress pressure fluctuations.
基金supported by the National Key Research Program of China(Grant Nos.2021YFA1401900,2022YFA1403300,and 2020YFA0309100)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0302602 and 2024ZD0300103)+1 种基金the National Natural Science Foundation of China(Grant No.12074073)for samplefabrication and measurementthe support by the The Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures(Grant No.JZHKYPT-2021-08).
文摘When a perpendicular magnetic field penetrates a thin slab of a type-Ⅱ superconductor it produces vortices,with one vortex per flux quantum,h/2e.The vortices interact repulsively and form an ordered array(Abrikosov lattice)in clean systems,while strong disorder changes the lattice into a vortex glass.The collective vortex dynamics is extremely vulnerable to external perturbations.Consequently,although of great importance,experimental observation is limited.Here we investigate type-Ⅱ superconducting films(PdBi_(2)and NbSe_(2))with surface acoustic waves(SAWs)at mK temperature.When sweeping the magnetic field at an extremely slow rate,we observe a series of spikes in the attenuation and velocity of the SAW,on average separated in field by approximately Hc1.We propose the following scenario:The vortex-free region at the edges of the film produces an edge barrier across which the vortices can enter or leave.When the applied field changes,the induced supercurrents flowing along this edge region lowers this barrier until there is an instability.At that point,vortices avalanche into(or out of)the bulk and change the vortex crystal,suggested by the sharp jump in each such spike.The vortices then gradually relax to a new stable pinned configuration,leading to a~30 s relaxation after the jump.Our observation enriches the limited experimental evidence on the important topic of real-time vortex dynamics in superconductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.11702159).
文摘Vortex dynamics,with the possibility of efficient flow control,is explored in this study based on the new introduced vortex definition and identification system of Liutex.With the six core elements of vortex identification,including(1)absolute strength,(2)relative strength,(3)local rotational axis,(4)global rotational axis,(5)vortex core size and(6)vortex boundary,provided by the Liutex system,it is possible to numerically devise strategies,primarily by introducing additional source terms in Navier-Stokes equations,which we call Liutex force field model here,to control the vortex regions.Two methodologies of centripetal force model and counter-rotation force model are preliminarily investigated in a cavitating flow around two-dimensional Clark-Y hydrofoil.It is found that Liutex based models are capable of illustrating the vortex dynamics and possibly strengthening or weakening the vortices.
基金supported by Indiana University start-up funding
文摘The merging of multiple vortices is a fundamental process of the dynamics of Earth's atmosphere and oceans. In this study, the interaction of like-signed vortices is analytically and numerically examined in a framework of two-dimensional inviscid barotropic flows. It is shown that barotropic vortex interaction turns out to be more intricate than simple merging scenarios often assumed in previous studies. Some particular configurations exist in which the vortex merging process is never complete despite strong interaction of like-signed vortices, regardless of the strengths or distances between the vortices.While the conditions for a complete vortex merging process introduced in this study appear to be too strict for most practical applications, this study suggests that careful criteria for vortex mergers should be properly defined when simulating the interaction of vortices, because the merging may not always result in a final enhanced circulation at the end of the interaction,as usually assumed in the literature.
文摘We give a brief review of the asymptotic theory of slender vortex filaments with emphases on (i) the choices of scalings and small parameters characterizing the physical problem,(ii) the key steps in the formulation of the theory and (iii) the assumptions and/or restrictions on the theory of Callegari and Ting (1978).We present highlights of an extension of the 1978 asymptotic theory:the analyses for core structures with axial variation.Making use of the physical insights gained from the analyses,we present a new derivation of the evolution equations for the core structure.The new one is simpler and straightforward and shows the physics clearly.
文摘Hemodynamics plays a crucial role in the growth of an abdominal aortic aneurysm(AAA)and its possible rupture.Due to the serious consequences that arise from the aneurysm rupture,the ability to predict its evolution and the need for surgery are of primary importance in the medical field.Furthermore,the presence of intraluminal thrombus(ILT)strongly affects the evolution of the pathology.In this study,we analyzed the influence of hemodynamics on the growth and possible rupture of AAAs.Numerical investigations of pulsatile non-Newtonian blood flow were performed in six patient-specific AAAs reconstructed from diagnostic images,having different sizes and shapes,and with or without ILT.Wall shear stress and vorticity distribution in the bulge and their evolution during the cardiac cycle were analyzed.The results indicate that blood flow dynamics acts synergistically with atherosclerotic degeneration in the development of the disease.The high surface complexity and tortuosity of the aneurysms significantly affect the blood motion,and the presence of inflection in the aneurysm centerline has a noticeable effect on the vortex dynamics.Links between regions of slow recirculating flows,low values of time-averaged wall shear stress,high values of oscillatory shear index,and zones of ILT deposition were found.In the absence of ILT,possible thrombus accumulation areas and consequent aneurysm growth were identified.The findings of this study highlight the importance of hemodynamics in assessing the vulnerability of the aortic wall and underline the crucial role of patient-specific investigations in predicting the rupture of individual aneurysms.
基金The project supported by The National Education Commission of China and NASA under cooperative grant agreement # NCC5-34
文摘Nonlinear interactions of vortex rings with a free surface are considered in an incompressible, ideal fluid using the vortex contour dynamics technique and the boundary integral equation method. The flow is axisymmetric and the vorticity is linearly distributed in the vortex. Effects of the gravity and the surface tension as well as the initial geometric parameter of the vortex on the interaction process are investigated in considerable detail. The interaction process may be divided into three major stages: the vortex free-traveling stage, the collision stage, and the vortex stretching and rebounding stage. Time evolutions of both the vortex and free surface under various conditions are provided and analyzed. Two kinds of waves exist on the free surface during interaction. In a special case where the gravity and surface tension are very weak or the vortex is very strong, an electric-bulb-like 'cavity' is formed an the free surface and the vortex is trapped in the 'cavity' for quite a. long time, resulting in a large amount, of fluid above the mean fluid surface.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2021YFA0718700,2018YFB0704102,2017YFA0303003,2017YFA0302902,2016YFA0300301,and 2021YFA0718802)the National Natural Science Foundation of China(Grant Nos.11927808,11834016,118115301,119611410,11961141008,61727805+5 种基金11961141002)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(CAS)(Grant Nos.QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001)CAS Interdisciplinary Innovation Team,the Strategic Priority Research Program(B)of CAS(Grant Nos.XDB25000000and XDB33000000)the Beijing Natural Science Foundation(Grant No.Z190008)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0101340002)the support from the China Postdoctoral Science Foundation(Grant No.2022M711497)。
文摘High quality Nb films were successfully prepared on both flexible polyimide(PI)and rigid Al2O3substrates and their transport properties were systematically studied at various applied currents,external magnetic fields,and sample orientations.It is found that a curved Nb/PI film exhibits quite different superconducting transition and vortex dynamics compared to the flat Nb/Al2O3film.For the curved Nb/PI film,smooth superconducting transitions were obtained at low currents,while unexpected cascade structures were revealed in theρ(T)curves at high currents.We attribute this phenomenon to the gradient distribution of vortex density together with a variation of superconductivity along the curved film.In addition,reentrant superconductivity was induced in the curved Nb/PI thin film by properly choosing the measurement conditions.We attribute this effect to the vortex pinning from both in-plane vortices and out-of-plane vortices.This work reveals the complex transport properties of curved superconducting thin films,providing important insights for further theoretical investigations and practical developments of flexible superconductors.
基金provided by the Guangdong Basic and Applied Basic Research Foundation of China(Grant Nos.2024A1515012552,2022A1515011938,2022A1515012425)the National Natural Science Foundation of China(Grant No.12005088)the support received from Lingnan Normal University(Grant Nos.YL20200203,ZL1930)。
文摘Utilizing the dissipative Gross-Pitaevskii equation,we investigated the splitting dynamics of triply quantized vortices at finite temperature.Through linear perturbation analysis,we determined the excitation modes of these vortices across various dissipation parameters.We identified three unstable modes with p=2-,3-and 4-fold rotational symmetries,revealing a significant dynamic transition of the most unstable mode.That is,as the dissipation parameter increases the most unstable mode transitions from the p=2 mode to the p=3 mode.Throughout the entire range of dissipation parameters,the p=4 unstable mode is never the dominant mode.Subsequently,we performed nonlinear numerical simulations of the vortex splitting process.Under random perturbations we confirmed the dynamical transition,and under specific perturbations we confirmed the instability of the p=4 mode.Our findings on the finite temperature dependence of the splitting dynamics of triply quantized vortices are expected to be verifiable in experiments.
基金National Natural Science Foundation of China(41405062, 41775017)。
文摘Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4 D-Var can be applied to control the trajectory of simulated tropical cyclones by producing "optimal" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously,and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4 D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation,which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4 D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.
基金supported by the National Natural Science Foundation of China(Nos.GZ 1280,11722215 and 11721202)。
文摘The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags are chosen as the experimental parameters,while the Strouhal number,the reduced frequency and the Reynolds number are fixed.During the motion of the airfoil,the leading edge vortex,the reattached vortex and the secondary vortex are observed in the flow field.The leading edge vortex is found to be the main flow structure through the proper orthogonal decomposition.The increase of phase lag results in the increase of the leading edge velocity,which strongly influences the leading edge shear layer and the leading edge vortex.The plunging motion contributes to the development of the leading edge shear layer,while the pitching motion is the key reason for instability of the leading edge shear layer.It is also found that a certain increase of phase lag,around 34.15°in this research,can increase the airfoil lift.
基金supported by the National Natural Science Foundation of China(11372304 and 11132010)the 111 Project(B07033)
文摘The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are identified.One is nonlinear relation between the thrust and the area moment of plate for lower area moment region and the other is linear relation for larger area moment region.The tendency of the power variation with the area moment is reasonably similar to the thrust behavior and the efficiency decreases gradually as the area moment increases.As the mechanism of the dynamic properties is associated with the evolution of vortical structures around the plate,the formation and evolution of vortical structures are investigated and the effects of the plate shape,plate area,Strouhal number and Reynolds number on the vortical structures are analyzed.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to flapping locomotion.
基金supported by the National Natural Science Foundation of China(No.11721202)。
文摘The flow around a square cylinder with a synthetic jet positioned at the rear surface is numerically investigated with the unsteady Reynolds-averaged Navier-Stokes(URANS)method.Instead of the typical sinusoidal wave,a bi-frequency signal is adopted to generate the synthetic jet.The bi-frequency signal consists of a basic sinusoidal wave and a high-frequency wave.Cases with various amplitudes of the high-frequency component are simulated.It is found that synthetic jets actuated by bi-frequency signals can realize better drag reduction with lower energy consumption when appropriate parameter sets are applied.A new quantity,i.e.,the actuation efficiency Ae,is used to evaluate the controlling efficiency.The actuation efficiency Ae reaches its maximum of 0.2668 when the amplitude of the superposed high-frequency signal is 7.5%of the basic signal.The vortex structures and frequency characteristics are subsequently analyzed to investigate the mechanism of the optimization of the bi-frequency signal.When the synthetic jet is actuated by a single-frequency signal with a characteristic velocity of 0.112 m/s,the wake is asymmetrical.The alternative deflection of vortex pairs and the peak at half of the excitation frequency in the power spectral density(PSD)function are detected.In the bi-frequency cases with the same characteristic velocity,the wake gradually turns to be symmetrical with the increase in the amplitude of the high-frequency component.Meanwhile,the deflection of the vortex pairs and the peak at half of the excitation frequency gradually disappear as well.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Grant No.91941301)the Key Research and Development Project of Sichuan Province(Grant No.2019ZYZF0002)。
文摘Effects of Reynolds(Re)number and Schmidt(Sc)number on the flow structures and variable density mixing are numerically investigated through the canonical shock cylindrical bubble interaction.By determining the viscosity and diffusivity within a wide range,the controlling parameters,total vortex circulation,and compression rate,are conservative under a broad range of Re and Sc numbers(Re≈10^(3)-10^(5)and Sc≈0.1-5)in the same shock Mach(Ma)number condition(Ma=2.4).As for the Re number effect,the circulation of secondary baroclinic vorticity(SBV),induced by the main vortex centripetal acceleration,is observed to be higher in high Re number and vice versa.Based on the vorticity transport equation decomposition,a growth-inhibition vorticity dynamics balance mechanism is revealed:the vorticity viscous term grows synchronously with baroclinic production to inhibit SBV production in low Re number.By contrast,the viscous term terminates the baroclinic term with a time lag in high Re number,leading to the SBV production.Since the SBV reflects the local stretching enhancement based on the advection-diffusion equation,mixing is influenced by the Sc number in a different behavior if different Re numbers are considered.The time-averaged variable density mixing rate emerges a scaling law with Sc number asχ^(∗)=β·Sc^(−α),where the coefficientβ∼Re−0.2 and the scaling exponentα∼Re−0.385.The understanding of Re number and Sc number effect on variable density mixing provides an opportunity for mixing enhancement from the perspective of designing the viscosity and diffusivity of the fluid mixture.
基金the financial support provided by the Deakin University,Australiathe University of Canterbury,New Zealand (No. 452DISDZ)
文摘A better understanding of the mixing behavior of excited turbulent mixing layers is critical to a number of aerospace applications.Previous studies of excited turbulent mixing layers focused on single frequency excitation or the excitation with fundamental and its second harmonic frequency.There is a lack of detailed studies on applying low and higher frequency excitation.In this study,we have performed large-eddy simulations of periodically excited turbulent mixing layers.The excitation consists of a fundamental frequency and its third harmonic.We have used phase-averaging to identify the vortex structure and strength in the mixing layer,and we have studied the vortex dynamics.Two different vortex paring mechanisms are observed depending on the phase shift between the two excitation frequencies.The influence of these two mechanisms on the mixing of a passive scalar is also studied.It is found that exciting the mixing layer with these low and high frequencies has initially an adverse influence on the mixing process;however,it improves the mixing further downstream of the splitter plate with the excitation using a phase shift ofΔφ=πshowing the best mixing performance.The present works shed lights on the fundamental vortex dynamics,and has great potential for aeronautical,automotive and combustion engineering applications.