Deep ultraviolet coherent light,particularly at the wavelength of 193 nm,has become indispensable for semiconductor lithography.We present a compact solid-state nanosecond pulsed laser system capable of generating 193...Deep ultraviolet coherent light,particularly at the wavelength of 193 nm,has become indispensable for semiconductor lithography.We present a compact solid-state nanosecond pulsed laser system capable of generating 193-nm coherent light at the repetition rate of 6 kHz.One part of the 1030-nm laser from the homemade Yb:YAG crystal amplifier is divided to generate 258 nm laser(1.2 W)by fourth-harmonic generation,and the rest is used to pump an optical parametric amplifier producing 1553 nm laser(700 mW).Frequency mixing of these beams in cascaded LiB_(3)O_(5) crystals yields a 193-nm laser with 70-mW average power and a linewidth of less than 880 MHz.By introducing a spiral phase plate to the 1553-nm beam before frequency mixing,we generate a vortex beam carrying orbital angular momentum.This is,to our knowledge,the first demonstration of a 193-nm vortex beam generated from a solid-state laser.Such a beam could be valuable for seeding hybrid ArF excimer lasers and has potential applications in wafer processing and defect inspection.展开更多
The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus...The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus,the ability to manipulate its degrees of freedom is highly desirable.In this paper,the full-domain polarization modulation of BlVVB within a hot atomic ensemble has been investigated.We begin with the theoretical analysis of the resonant magneto-optical effect of atoms with a horizontal linear-polarized beam and experimentally demonstrate precise manipulation of the polarization state across the entire domain of the BlVVB,achieving an error margin of less than 3°at various cross-sectional points.Our study provides a novel approach for the modulation of BlVVB based on atomic media,which holds potential applications in sensitive vector magnetometers,optical communications,and signal processing.展开更多
The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtai...The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.展开更多
By using wave optics numerical simulation, the intensity-hole effect, beam spreading and wandering properties of Gaussian vortex beam propagation in atmospheric turbulence are investigated quantitatively. It is found ...By using wave optics numerical simulation, the intensity-hole effect, beam spreading and wandering properties of Gaussian vortex beam propagation in atmospheric turbulence are investigated quantitatively. It is found that an intensity hole in the center of the beam pattern appears gradually as a Gaussian vortex beam propagates. The size of the intensity hole increases with the increase of the topological charge of the vortex phase. However, the intensity hole could to some extent be filled with optical energy by atmospheric turbulence, especially in strong turbulence. The radius of the intensity hole first decreases and then increases with the growth of turbulence strength. The effective radius of vortex beam with larger topological charge is greater than with a smaller topological charge. But the topological charge has no evident influence on beam wandering.展开更多
Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vor...Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vortex beams with flexible control of the topological charge and modes in a carbon dots random laser for the first time.Vortex beams with different types,including the Laguerre-Gaussian(LG),Bessel-Gaussian(BG),LG-superposition,and polarized vortex beams with topological charges up to 50,have been successfully achieved.Moreover,vortex beams can be well realized in carbon dots random lasers with different emission wavelengths covering from 465 to 612 nm.This work would not only enrich the types of vortex laser,especially for solution-processable lasers,but also provide a new route to realizing multicolor and wavelength-tunable vortex lasers.展开更多
Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the f...Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.展开更多
In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how...In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.展开更多
The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement prec...The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement precision, and the radially polarized vortex beams are generated by a liquid-crystal polarization converter and a vortex phase plate. The focused fields of radially polarized vortex beams with different topological charges at numerical apertures (NAs) of 0.65 and 0.85 are measured respectively, and the results indicate that the total intensity distribution at focus is dependent not only on the NA of the focusing objective lens and polarization pattern of the beam but also on the topological charge l of the beam. Some unique focusing properties of radially polarized vortex beams with fractional topological charges are presented based on numerical calculations. The experimental verification paves the way for some practical applications of radially polarized vortex beams, such as in optical trapping, near-field microscopy, and material processing.展开更多
The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pan...The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pancharatnam-Berry phase elements,which possess different rotation angles and are arranged on two concentric rings centered on the origin.The circularly polarized incident THz beam could be turned into a cross-polarization transmission wave,and the orbital angular momentum(OAM)varies in value by lh.The l values change from±1 to±5,and the maximal cross-polarization conversion efficiency that could be achieved is 23%,which nearly reaches the theoretical limit of a single-layer structure.The frequency range of the designed vortex generator is from 1.2 THz to 1.9 THz,and the generated THz vortex beam could keep a high fidelity in the operating bandwidth.The propagation behavior of the emerged THz vortex beam is analyzed in detail.Our work offers a novel way of designing ultra-thin and single-layer vortex beam generators,which have low process complexity,high conversion efficiency and broad bandwidth.展开更多
Last decade has witnessed a rapid development of the generation of terahertz(THz)vortex beams as well as their wide applications,mainly due to their unique combination characteristics of regular THz radiation and orbi...Last decade has witnessed a rapid development of the generation of terahertz(THz)vortex beams as well as their wide applications,mainly due to their unique combination characteristics of regular THz radiation and orbital angular momentum(OAM).Here we have reviewed the ways to generate THz vortex beams by two representative scenarios,i.e.,THz wavefront modulation via specific devices,and direct excitation of the helicity of THz vortex beams.The former is similar to those wavefront engineering devices in the optical and infrared(IR)domain,but just with suitable THz materials,while the latter is newly-developed in THz regime and some of the physical mechanisms still have not been explained explicitly enough though,which would provide both challenges and opportunities for THz vortex beam generation.As for their applications,thanks to the recent development of THz optics and singular optics,THz vortex beams have potentials to open doors towards a myriad of practice applications in many fields.Besides,some representative potential applications are evaluated such as THz wireless communication,THz super-resolution imaging,manipulating chiral matters,accelerating electron bunches,and detecting astrophysical sources.展开更多
Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend...Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend on off-axis displacement parameters along the x and y directions, waist width, wavelength, and topological charge of the diffracted Gaussian vortex beam, as well as on propagation distance. The results are illustrated by numerical calculations.展开更多
Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase diffe...Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.展开更多
The propagation dynamics of a chirped Airy vortex(CAiV) beam with x-polarization in uniaxial crystals orthogonal to the optical axis is studied analytically and numerically. The effect of the ratio of extraordinary ...The propagation dynamics of a chirped Airy vortex(CAiV) beam with x-polarization in uniaxial crystals orthogonal to the optical axis is studied analytically and numerically. The effect of the ratio of extraordinary and ordinary refractive indices, the chirp parameter, as well as the propagation distance is analyzed, which shows that the focused position of the CAi V beams can be controlled through changing the ratio of the extraordinary and ordinary refractive indices. In addition,with the propagation distance increasing, the asymmetry of the intensity and the angular momentum of the CAi V beam during propagation becomes much more visible. The variation of the chirp parameters can change the attenuation velocity of the vortex as well.展开更多
The applications of metasurfaces are currently a highly active research field due to their extraordinary ability to manipulate electromagnetic waves. The ultra-thin characteristics of metasurfaces allow the miniaturiz...The applications of metasurfaces are currently a highly active research field due to their extraordinary ability to manipulate electromagnetic waves. The ultra-thin characteristics of metasurfaces allow the miniaturization and integration of metasurface devices. However, these devices work typically under a low efficiency and narrow bandwidth condition. In this work, we design eight multilayered unit cells with similar amplitudes and a phase interval of π/4, which convert the polarization states of the terahertz(THz) waves between two orthogonal directions. The average cross-polarized transmission amplitudes of these cells are all around 0.9 in an ultra-broad frequency range from 0.5 THz to 1.4 THz. Furthermore,unit cells are used to construct both an ultra-thin anomalous refraction metalens and a vortex phase plate. Our simulation results show that the anomalous refraction for the transmitted linear polarization component is comparable to the theoretical prediction, and the maximum error is determined to be below 4.8%. The vortex phase plate can also generate an ideal terahertz vortex beam with a mode purity of 90% and more. The distributions of longitudinal electric field, intensity, and phase illustrate that the generated vortex beam has excellent propagation characteristics and a weak divergence. Simulations of the two types of metasurface devices, based on the eight unit cells, exhibit very high efficiencies in a wide bandwidth. Our research will assist in the improvement in the practical applications of metasurfaces. It also provides a reference for the design of high efficiency and broadband devices that are applied to other frequency ranges.展开更多
Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that ...Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.展开更多
The generation and propagation of partially coherent vortex beams have been investigated experimentally.It is found that a vortex beam with more uniform intensity distribution can be obtained by decreasing the coheren...The generation and propagation of partially coherent vortex beams have been investigated experimentally.It is found that a vortex beam with more uniform intensity distribution can be obtained by decreasing the coherence of the beam.We find that the beam shape of a completely coherent beam will keep hollow profile invariant during its propagation in free space.However,the center of the beam turns to be blurred for a partially coherent vortex beam on propagation.It is also found that the beam spreads more rapidly for the vortex beam with lower coherence,and this influence can be decreased by increasing the topological charge of the vortex beam.展开更多
Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing...Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing properties of circular airy vortex beams and exhibit unique propagation characteristics. We study the use of the dynamic phase and Pancharatnam–Berry phase principles for generation and modulation of EAVBs by designing complex-amplitude metasurface and phase-only metasurface, at an operating wavelength of 1500 nm. It is found that the focusing pattern of EAVBs in the autofocusing plane splits into |m| + 1 tilted bright spots from the original ring, and the tilted direction is related to the sign of the topological charge number m. Due to the advantages of ultra-thin, ultra-light, and small size of the metasurface, our designed metasurface device has potential applications in improving the channel capacity based on orbital angular momentum communication, information coding, and particle capture compared to spatial light modulation systems that generate EAVBs.展开更多
Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair ...Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.展开更多
The concept of a quadratic vortex beam is proposed, in which phase term of the beam is given by exp(i mθ2). The phase of the quadratic vortex beam increases with azimuthal angle nonlinearly. This change in phase pr...The concept of a quadratic vortex beam is proposed, in which phase term of the beam is given by exp(i mθ2). The phase of the quadratic vortex beam increases with azimuthal angle nonlinearly. This change in phase produces several unexpected effects. Unlike the circularly symmetric beam spot of normal vortex beams, the intensity distribution of the quadratic vortex beam is shown to be asymmetric. The phase singularities will shift in the transverse beam plane on propagation.展开更多
基金supported by the Research Project of the Aerospace Information Research Institute,the Chinese Academy of Sciences(Grant Nos.E1Z1D101 and E2Z2D101)the Chinese Academy of Sciences(Grant No.E33310030D)the Guangzhou Basic and Applied Basic Research Foundation(Grant Nos.2023A04J0336 and 2023A04J0024).
文摘Deep ultraviolet coherent light,particularly at the wavelength of 193 nm,has become indispensable for semiconductor lithography.We present a compact solid-state nanosecond pulsed laser system capable of generating 193-nm coherent light at the repetition rate of 6 kHz.One part of the 1030-nm laser from the homemade Yb:YAG crystal amplifier is divided to generate 258 nm laser(1.2 W)by fourth-harmonic generation,and the rest is used to pump an optical parametric amplifier producing 1553 nm laser(700 mW).Frequency mixing of these beams in cascaded LiB_(3)O_(5) crystals yields a 193-nm laser with 70-mW average power and a linewidth of less than 880 MHz.By introducing a spiral phase plate to the 1553-nm beam before frequency mixing,we generate a vortex beam carrying orbital angular momentum.This is,to our knowledge,the first demonstration of a 193-nm vortex beam generated from a solid-state laser.Such a beam could be valuable for seeding hybrid ArF excimer lasers and has potential applications in wafer processing and defect inspection.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12033007,61801458,12103058,12203058,12074309,and 61875205)the Key Project of Frontier Science Research of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH007)+2 种基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the Youth Innovation Promotion Association,CAS(Grant Nos.2021408,2022413,and 2023425)the Research on Highly Sensitive Long-Wave Receiver Based on Rydberg Atoms(Grant No.1P2024000059)。
文摘The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus,the ability to manipulate its degrees of freedom is highly desirable.In this paper,the full-domain polarization modulation of BlVVB within a hot atomic ensemble has been investigated.We begin with the theoretical analysis of the resonant magneto-optical effect of atoms with a horizontal linear-polarized beam and experimentally demonstrate precise manipulation of the polarization state across the entire domain of the BlVVB,achieving an error margin of less than 3°at various cross-sectional points.Our study provides a novel approach for the modulation of BlVVB based on atomic media,which holds potential applications in sensitive vector magnetometers,optical communications,and signal processing.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108,11374107,10904041,and 11547212)the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province,China+2 种基金the CAS Key Laboratory of Geospace Environment,University of Science and Technology of Chinathe National Training Program of Innovation and Entrepreneurship for Undergraduates(Grant No.2015093)the Science and Technology Projects of Guangdong Province,China(Grant No.2013B031800011)
文摘The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.
基金Project supported by the National Natural Science Foundation of China(Grant No.61107066)
文摘By using wave optics numerical simulation, the intensity-hole effect, beam spreading and wandering properties of Gaussian vortex beam propagation in atmospheric turbulence are investigated quantitatively. It is found that an intensity hole in the center of the beam pattern appears gradually as a Gaussian vortex beam propagates. The size of the intensity hole increases with the increase of the topological charge of the vortex phase. However, the intensity hole could to some extent be filled with optical energy by atmospheric turbulence, especially in strong turbulence. The radius of the intensity hole first decreases and then increases with the growth of turbulence strength. The effective radius of vortex beam with larger topological charge is greater than with a smaller topological charge. But the topological charge has no evident influence on beam wandering.
基金financially supported by the Science and Technology Major Project of Henan Province (No.221100230300)。
文摘Vortex beams have attracted great attention due to their promising applications in the fields of high-capacity optical communication,optical micromanipulation,and quantum information processing.Here,we demonstrate vortex beams with flexible control of the topological charge and modes in a carbon dots random laser for the first time.Vortex beams with different types,including the Laguerre-Gaussian(LG),Bessel-Gaussian(BG),LG-superposition,and polarized vortex beams with topological charges up to 50,have been successfully achieved.Moreover,vortex beams can be well realized in carbon dots random lasers with different emission wavelengths covering from 465 to 612 nm.This work would not only enrich the types of vortex laser,especially for solution-processable lasers,but also provide a new route to realizing multicolor and wavelength-tunable vortex lasers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61108047 and 61240057)the Program for New Century Excellent Talentsin University,China(Grant No.NCET-13-0667)the Beijing Excellent Talent Training Project,China(Grant No.2011D005007000008)
文摘Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)
文摘In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 60908015)the Beijing Excellent Talent Training Project,China (Grant No. 2011D005007000008)
文摘The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated. An auto-focus technology is introduced into the measurement system in order to enhance the measurement precision, and the radially polarized vortex beams are generated by a liquid-crystal polarization converter and a vortex phase plate. The focused fields of radially polarized vortex beams with different topological charges at numerical apertures (NAs) of 0.65 and 0.85 are measured respectively, and the results indicate that the total intensity distribution at focus is dependent not only on the NA of the focusing objective lens and polarization pattern of the beam but also on the topological charge l of the beam. Some unique focusing properties of radially polarized vortex beams with fractional topological charges are presented based on numerical calculations. The experimental verification paves the way for some practical applications of radially polarized vortex beams, such as in optical trapping, near-field microscopy, and material processing.
基金the National Natural Science Foundation of China(Grant No.62071312)the Important R&D Projects of Shanxi Province,China(Grant No.201803D121083)the Shanxi Scholarship Council(Grant No.2020-135).
文摘The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pancharatnam-Berry phase elements,which possess different rotation angles and are arranged on two concentric rings centered on the origin.The circularly polarized incident THz beam could be turned into a cross-polarization transmission wave,and the orbital angular momentum(OAM)varies in value by lh.The l values change from±1 to±5,and the maximal cross-polarization conversion efficiency that could be achieved is 23%,which nearly reaches the theoretical limit of a single-layer structure.The frequency range of the designed vortex generator is from 1.2 THz to 1.9 THz,and the generated THz vortex beam could keep a high fidelity in the operating bandwidth.The propagation behavior of the emerged THz vortex beam is analyzed in detail.Our work offers a novel way of designing ultra-thin and single-layer vortex beam generators,which have low process complexity,high conversion efficiency and broad bandwidth.
基金Project supported partly by the National Natural Science Foundation of China(Grant Nos.61775142 and 61705132)Shenzhen Fundamental Research and Discipline Layout Project,China(Grant Nos.JCYJ20170412105812811,JCYJ20190808164007485,JCYJ20190808121817100,and JCYJ20190808115601653).
文摘Last decade has witnessed a rapid development of the generation of terahertz(THz)vortex beams as well as their wide applications,mainly due to their unique combination characteristics of regular THz radiation and orbital angular momentum(OAM).Here we have reviewed the ways to generate THz vortex beams by two representative scenarios,i.e.,THz wavefront modulation via specific devices,and direct excitation of the helicity of THz vortex beams.The former is similar to those wavefront engineering devices in the optical and infrared(IR)domain,but just with suitable THz materials,while the latter is newly-developed in THz regime and some of the physical mechanisms still have not been explained explicitly enough though,which would provide both challenges and opportunities for THz vortex beam generation.As for their applications,thanks to the recent development of THz optics and singular optics,THz vortex beams have potentials to open doors towards a myriad of practice applications in many fields.Besides,some representative potential applications are evaluated such as THz wireless communication,THz super-resolution imaging,manipulating chiral matters,accelerating electron bunches,and detecting astrophysical sources.
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 2009450159)the Foundation of the State Key Laboratory of Optical Technologies for Micro-Frabrication and Micro-Engineering,Chinese Academy of Sciences (Grant No. KF001)
文摘Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend on off-axis displacement parameters along the x and y directions, waist width, wavelength, and topological charge of the diffracted Gaussian vortex beam, as well as on propagation distance. The results are illustrated by numerical calculations.
基金supported by the National Natural Science Foundation of China(Grant No.60977068)the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation,Chinese Academy of Sciences(Grant No.SKLST200912)the Overseas Chinese Affairs Office of the State Council(Grant No.lOQZROl)
文摘Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)the National Training Program of Innovation and Entrepreneurship for Undergraduates,ChinaSpecial Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation,China(Grant No.pdjh2017b0137)
文摘The propagation dynamics of a chirped Airy vortex(CAiV) beam with x-polarization in uniaxial crystals orthogonal to the optical axis is studied analytically and numerically. The effect of the ratio of extraordinary and ordinary refractive indices, the chirp parameter, as well as the propagation distance is analyzed, which shows that the focused position of the CAi V beams can be controlled through changing the ratio of the extraordinary and ordinary refractive indices. In addition,with the propagation distance increasing, the asymmetry of the intensity and the angular momentum of the CAi V beam during propagation becomes much more visible. The variation of the chirp parameters can change the attenuation velocity of the vortex as well.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62071312)the National Key Research and Development Program of China (Grant No. 2021YFB3200100)+1 种基金the Important Research and Development Projects of Shanxi Province, China (Grant No. 201803D121083)the Fund from the Shanxi Scholarship Council, China (Grant No. 2020-135)。
文摘The applications of metasurfaces are currently a highly active research field due to their extraordinary ability to manipulate electromagnetic waves. The ultra-thin characteristics of metasurfaces allow the miniaturization and integration of metasurface devices. However, these devices work typically under a low efficiency and narrow bandwidth condition. In this work, we design eight multilayered unit cells with similar amplitudes and a phase interval of π/4, which convert the polarization states of the terahertz(THz) waves between two orthogonal directions. The average cross-polarized transmission amplitudes of these cells are all around 0.9 in an ultra-broad frequency range from 0.5 THz to 1.4 THz. Furthermore,unit cells are used to construct both an ultra-thin anomalous refraction metalens and a vortex phase plate. Our simulation results show that the anomalous refraction for the transmitted linear polarization component is comparable to the theoretical prediction, and the maximum error is determined to be below 4.8%. The vortex phase plate can also generate an ideal terahertz vortex beam with a mode purity of 90% and more. The distributions of longitudinal electric field, intensity, and phase illustrate that the generated vortex beam has excellent propagation characteristics and a weak divergence. Simulations of the two types of metasurface devices, based on the eight unit cells, exhibit very high efficiencies in a wide bandwidth. Our research will assist in the improvement in the practical applications of metasurfaces. It also provides a reference for the design of high efficiency and broadband devices that are applied to other frequency ranges.
基金the National Natural Sciencefoundation of China (Grant No. 12174085)the FundamentalResearch Funds for the Central Universities (GrantNo. B220202018)+1 种基金the Basic Science (Natural Science) ResearchProject for the Universities of Jiangsu Province (GrantNo. 23KJD140002)Natural Science Foundation of Nantong(Grant No. JC2023081).
文摘Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.
基金supported by the Key Project of Science and Technology (2007H0027) of Fujin Provincethe Natural Science Founation of Fujin Province (A0810012)
文摘The generation and propagation of partially coherent vortex beams have been investigated experimentally.It is found that a vortex beam with more uniform intensity distribution can be obtained by decreasing the coherence of the beam.We find that the beam shape of a completely coherent beam will keep hollow profile invariant during its propagation in free space.However,the center of the beam turns to be blurred for a partially coherent vortex beam on propagation.It is also found that the beam spreads more rapidly for the vortex beam with lower coherence,and this influence can be decreased by increasing the topological charge of the vortex beam.
基金supported by the National Natural Science Foundation of China (Grant No. 61975185)the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY19F030004 and LY20F050002)。
文摘Elliptical airy vortex beams(EAVBs) can spontaneously form easily identifiable topological charge focal spots. They are used for topological charge detection of vortex beams because they have the abruptly autofocusing properties of circular airy vortex beams and exhibit unique propagation characteristics. We study the use of the dynamic phase and Pancharatnam–Berry phase principles for generation and modulation of EAVBs by designing complex-amplitude metasurface and phase-only metasurface, at an operating wavelength of 1500 nm. It is found that the focusing pattern of EAVBs in the autofocusing plane splits into |m| + 1 tilted bright spots from the original ring, and the tilted direction is related to the sign of the topological charge number m. Due to the advantages of ultra-thin, ultra-light, and small size of the metasurface, our designed metasurface device has potential applications in improving the channel capacity based on orbital angular momentum communication, information coding, and particle capture compared to spatial light modulation systems that generate EAVBs.
文摘Tight focusing properties of an azimuthally polarized Gaussian beam with a pair of vortices through a dielectric interface is theoretically investigated by vector diffraction theory. For the incident beam with a pair of vortices of opposite topological charges, the vortices move toward each other, annihilate and revive in the vicinity of focal plane, which results in the generation of many novel focal patterns. The usable focal structures generated through the tight focusing of the double-vortex beams may find applications in micro-particle trapping, manipulation, and material processing, etc.
基金supported by the National Natural Science Foundation of China (Grant No.61178015)the Nurturing Program of National Nature Science Foundation of China (Grant No.JB-ZR1126)the Open Research Fund of State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences (Grant No.SKL ST200912)
文摘The concept of a quadratic vortex beam is proposed, in which phase term of the beam is given by exp(i mθ2). The phase of the quadratic vortex beam increases with azimuthal angle nonlinearly. This change in phase produces several unexpected effects. Unlike the circularly symmetric beam spot of normal vortex beams, the intensity distribution of the quadratic vortex beam is shown to be asymmetric. The phase singularities will shift in the transverse beam plane on propagation.