Rubber-like materials that are commonly used in structural applications are modelled using hyperelastic material models.Most of the hyperelastic materials are nearly incompressible,which poses challenges,i.e.,volumetr...Rubber-like materials that are commonly used in structural applications are modelled using hyperelastic material models.Most of the hyperelastic materials are nearly incompressible,which poses challenges,i.e.,volumetric locking during numerical modelling.There exist many formulations in the context of the finite element method,among which the mixed displacementpressure formulation is robust.However,such a displacement-pressure formulation is less explored in meshfree methods,which mitigates the problem associated with mesh distortion during large deformation.This work addresses this issue of alleviating volumetric locking in the element-free Galerkin method(EFGM),which is one of the popular meshfree methods.A two-field mixed variational formulation using the perturbed Lagrangian approach within the EFGM framework is proposed for modelling nearly incompressible hyperelastic material models,such as Neo-Hookean and Mooney-Rivlin.Taking advantage of the meshless nature of the EFGM,this work introduces a unique approach by randomly distributing pressure nodes across the geometry,following specific guidelines.A wide spectrum of problems involving bending,tension,compression,and contact is solved using two approaches of the proposed displacement-pressure node formulation involving regular and irregular pressure node distribution.It is observed that both approaches give accurate results compared to the reference results,though the latter offers flexibility in the pressure nodal distribution.展开更多
Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed th...Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.展开更多
This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit m...This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit material point method(iMPM).The global stiffness matrix is formed explicitly and the Newton-Raphson iterative method is used to solve the equilibrium equations.Where possible,the implementation procedure closely follows standard finite element method(FEM)approaches to allow easy conversion of other FEM codes.The generalized interpolation function is assigned to eliminate the inherent cell crossing noise within conventional MPM.For the first time,the B-bar approach is used to overcome volumetric locking in standard GIMP method for near-incompressible non-linear geomechanics.The proposed i GIMP was tested and compared with i MPM and analytical solutions via a 1 D column compression problem.Results highlighted the superiority of the i GIMP approach in reducing stress oscillations,thereby improving computational accuracy.Then,elasto-plastic slope stabilities and rigid footing problems were considered,further illustrating the ability of the proposed method to overcome volumetric locking due to incompressibility.Results showed that the proposed i GIMP with B-bar approach can be used to simulate geotechnical problems with large deformations.展开更多
基金supported by the DST-SERB and VSSC,ISRO of the project titled“Functionality Enhancement through Design and Development of Advanced Finite Element Algorithms for STR tools”under IMPRINT.IIC(IMP/2019/000276)scheme.
文摘Rubber-like materials that are commonly used in structural applications are modelled using hyperelastic material models.Most of the hyperelastic materials are nearly incompressible,which poses challenges,i.e.,volumetric locking during numerical modelling.There exist many formulations in the context of the finite element method,among which the mixed displacementpressure formulation is robust.However,such a displacement-pressure formulation is less explored in meshfree methods,which mitigates the problem associated with mesh distortion during large deformation.This work addresses this issue of alleviating volumetric locking in the element-free Galerkin method(EFGM),which is one of the popular meshfree methods.A two-field mixed variational formulation using the perturbed Lagrangian approach within the EFGM framework is proposed for modelling nearly incompressible hyperelastic material models,such as Neo-Hookean and Mooney-Rivlin.Taking advantage of the meshless nature of the EFGM,this work introduces a unique approach by randomly distributing pressure nodes across the geometry,following specific guidelines.A wide spectrum of problems involving bending,tension,compression,and contact is solved using two approaches of the proposed displacement-pressure node formulation involving regular and irregular pressure node distribution.It is observed that both approaches give accurate results compared to the reference results,though the latter offers flexibility in the pressure nodal distribution.
基金supported by the National Natural Science Foundation of China(50474053,50475134 and 50675081)the 863 project (2007AA042142)
文摘Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.
基金the National Natural Science Foundation of China(Nos.41807223 and 51908175)the Fundamental Research Funds for the Central Universities(No.B210202096)+1 种基金the Natural Science Foundation of Guangdong Province(No.2018A030310346)the Water Conservancy Science and Technology Innovation Project of Guangdong Province(No.2020-11),China。
文摘This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit material point method(iMPM).The global stiffness matrix is formed explicitly and the Newton-Raphson iterative method is used to solve the equilibrium equations.Where possible,the implementation procedure closely follows standard finite element method(FEM)approaches to allow easy conversion of other FEM codes.The generalized interpolation function is assigned to eliminate the inherent cell crossing noise within conventional MPM.For the first time,the B-bar approach is used to overcome volumetric locking in standard GIMP method for near-incompressible non-linear geomechanics.The proposed i GIMP was tested and compared with i MPM and analytical solutions via a 1 D column compression problem.Results highlighted the superiority of the i GIMP approach in reducing stress oscillations,thereby improving computational accuracy.Then,elasto-plastic slope stabilities and rigid footing problems were considered,further illustrating the ability of the proposed method to overcome volumetric locking due to incompressibility.Results showed that the proposed i GIMP with B-bar approach can be used to simulate geotechnical problems with large deformations.