The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-int...To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-integral(PI)control,high model accuracy requirements,and complex system parameter tuning,this paper proposes a droop-controlled converter reactive power support strategy based on first-order linear active disturbance rejection control(LADRC).First,a mathematical model of a droop-controlled grid-forming(GFM)converter is established.A model equivalence method is then proposed to transform the dynamic characteristics of the control loop into equivalent impedance parameters.Based on the equivalent impedance parameter model,the influencing factors of the converter terminal voltage and point of common coupling(PCC)voltage are derived.Next,a first-order linear active disturbance rejection control strategy is introduced into the traditional droop control framework,and the controller parameters are optimized via the bandwidth tuning method.Finally,a simulation model of the droop-controlled GFM converter based on the linear active disturbance rejection controller is constructed on the PSCAD/EMTDC platform,and through comparative experiments under typical grid fault conditions,the effectiveness of the proposed control strategy in improving the system fault ride-through capability and voltage support is verified.展开更多
Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,...Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,and necroptosis.Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia–reperfusion injury.However,its role in PANoptosis remains largely unknown.In this study,we demonstrated that voltage-dependent anion channel 1 oligomerization-mediated mitochondrial dysfunction was associated with PANoptosis in retinal ischemia–reperfusion injury.Inhibition of voltage-dependent anion channel 1 oligomerization suppressed mitochondrial dysfunction and PANoptosis in retinal cells subjected to ischemia–reperfusion injury.Mechanistically,mitochondria-derived reactive oxygen species played a central role in the voltagedependent anion channel 1-mediated regulation of PANoptosis by promoting PANoptosome assembly.Moreover,inhibiting voltage-dependent anion channel 1 oligomerization protected against PANoptosis in the retinas of rats subjected to ischemia–reperfusion injury.Overall,our findings reveal the critical role of voltage-dependent anion channel 1 oligomerization in regulating PANoptosis in retinal ischemia–reperfusion injury,highlighting voltage-dependent anion channel 1 as a promising therapeutic target.展开更多
The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during pen...The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed.展开更多
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl...The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.展开更多
Nanocrystalline TiN films were prepared by DC reactive magnetron sputtering.The influence of substrate biases on structure,mechanical and corrosion properties of the deposited films was studied using X-ray diffraction...Nanocrystalline TiN films were prepared by DC reactive magnetron sputtering.The influence of substrate biases on structure,mechanical and corrosion properties of the deposited films was studied using X-ray diffraction,field emission scanning electron microscopy,nanoindentation and electrochemical techniques.The deposited films have a columnar structure,and their preferential orientation strongly depends on bias voltage.The preferential orientations change from(200)plane at low bias to(111)plane at moderate bias and then to(220)plane at relatively high bias.Nanohardness H,elastic modulus E,H/E*and H3/E*2 ratios,and corrosion resistance of the deposited films increase first and then decrease with the increase in bias voltage.All the best values appear at bias of-120 V,attributing to the film with a fine,compact and less defective structure.This demonstrates that there is a close relation among microstructure,mechanical and corrosion properties of the TiN films,and the film with the best mechanical property can also provide the most effective corrosion protection.展开更多
Recent events related to power system failure have shown that voltage collapse can be a cause of widespread outages.The thrust of this paper is to discuss and establish means of mitigating system voltage instability b...Recent events related to power system failure have shown that voltage collapse can be a cause of widespread outages.The thrust of this paper is to discuss and establish means of mitigating system voltage instability by using a combination of both reactive current droop compensation and line drop compensation.It is shown that the point that the voltage regulator controls can be defined by a new method which is based on a widely accepted voltage stability analysis tool.This tool can be used to determine which generators will have an impact on the maximum permissible loading of a bus.Dynamic analysis was carried out on the CIGRE Nordic test system to study the impact of control point location on time to collapse and it is shown that the new scheme can improve the voltage stability.展开更多
This paper simulates reactive magnetron-sputtering in constant current mode in a Vanadium-O2/Ar system equipped with a DC power supply by adopting both kinetics model and Berg's model. The target voltage during the r...This paper simulates reactive magnetron-sputtering in constant current mode in a Vanadium-O2/Ar system equipped with a DC power supply by adopting both kinetics model and Berg's model. The target voltage during the reactive sputtering has been investigated as a function of reactive gas flow. Both experiments and simulations demonstrate a hysteresis curve with respect to the oxygen supply. The time-dependent variation of the target mode is studied by measuring the target voltage for various reactive oxygen gas flows and pre-sputtering times. The pre- sputtering time increases with the increased initial target voltage. Furthermore, a corresponding time-dependent model simulating target voltage changes is also proposed. Based on these simulations, we find some relationships between the discharge voltage behaviour and the properties of the formed oxide. In this way, a better understanding of the target voltage changes during reactive sputtering can be achieved. We conclude that the presented theoretical models for parameter-dependent case and time-dependent case are in qualitative agreement with the experimental results and can be used to comprehend the target voltage behaviour in the deposition of vanadium oxide thin films.展开更多
The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easi...The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.展开更多
This paper studies the reactive power and voltage coordinated control scheme. According to the characteristics of Hunan power grid, the coordinated schemes about Hunan power grid with Central China Power Grid, as well...This paper studies the reactive power and voltage coordinated control scheme. According to the characteristics of Hunan power grid, the coordinated schemes about Hunan power grid with Central China Power Grid, as well as Changsha power grid are proposed. At the same time, this paper builds a two-way interactive and multiple dispatching reactive power and voltage coordinated control mode, and can be successfully applied in Hunan power grid. The operation results show that this control scheme fulfills the ability of large power grids in optimal allocating of resources, effectively integrates the reactive power resources of the entire grid, achieves the purpose of reducing power grid loss, improving voltage quality, reducing the operating numbers of the reactive power equipment.展开更多
In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect ...In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.展开更多
The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection th...The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection theory. There have been presented selected theories application in order to compensate the reactive power in one-phase circuits. The measurement results before the compensation have been discussed and measurement results after compensation of an actual object supplied from an non-sinusoidal voltage source were presented. The algorithms of optimal capacity selection were given, which connected in parallel to the circuit with inductive character will cause current root-mean-square value minimization. The measurement results after applying the reactive power minimization algorithm have shown improvement in compensation of strongly nonlinear receivers supplied with distorted signals.展开更多
Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic ...Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.展开更多
The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagra...The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly.展开更多
Honglian type-cytoplasmic male sterility(HL-CMS)is caused by the inter-communication between the nucleus and mitochondria.However,the mechanisms by which sterility genes regulate metabolic alterations and changes in m...Honglian type-cytoplasmic male sterility(HL-CMS)is caused by the inter-communication between the nucleus and mitochondria.However,the mechanisms by which sterility genes regulate metabolic alterations and changes in mitochondrial morphology in the pollen of HL-CMS remain unclear.In this study,we compared the morphological differences between the pollen of the male sterile line YA and the near-isogenic line NIL-Rf6 using hematoxylin-eosin staining and 4ʹ,6-diamidino-2-phenylindole(DAPI)staining.HL-CMS is characterized by gametophytic sterility,where the aborted pollen grains are empty,and the tapetal layer remains intact.Transmission electron microscopy was employed to observe mitochondrial morphological changes at the microspore stage,revealing significant mitochondrial alterations,characterized by the formation of'large spherical mitochondria',occurred at the binucleate stage in the YA line.Additionally,metabolomics analysis revealed decreased levels of metabolites associated with the carbohydrate and flavonoid pathways.Notably,the decrease in flavonoids was found to contribute to an elevation in reactive oxygen species(ROS)levels.Therefore,we propose a model in which rice fertility is modulated by the levels of pollen carbohydrates and flavonoid metabolites,with impaired mitochondrial energy production and reduced flavonoid biosynthesis as the main causes of ROS accumulation and pollen abortion in rice.展开更多
Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and wate...Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.展开更多
Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. Ho...Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries.展开更多
Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are co...Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs.展开更多
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
基金supported by the Smart Grid-National Science and Technology Major Project(No.2024ZD0801400)the Science and Technology Projects of State Grid Corporation of China(No.52272224000V).
文摘To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-integral(PI)control,high model accuracy requirements,and complex system parameter tuning,this paper proposes a droop-controlled converter reactive power support strategy based on first-order linear active disturbance rejection control(LADRC).First,a mathematical model of a droop-controlled grid-forming(GFM)converter is established.A model equivalence method is then proposed to transform the dynamic characteristics of the control loop into equivalent impedance parameters.Based on the equivalent impedance parameter model,the influencing factors of the converter terminal voltage and point of common coupling(PCC)voltage are derived.Next,a first-order linear active disturbance rejection control strategy is introduced into the traditional droop control framework,and the controller parameters are optimized via the bandwidth tuning method.Finally,a simulation model of the droop-controlled GFM converter based on the linear active disturbance rejection controller is constructed on the PSCAD/EMTDC platform,and through comparative experiments under typical grid fault conditions,the effectiveness of the proposed control strategy in improving the system fault ride-through capability and voltage support is verified.
基金supported by the National Natural Science Foundation of China,Nos.82172196(to KX),82372507(to KX)the Natural Science Foundation of Hunan Province,China,No.2023JJ40804(to QZ)the Key Laboratory of Emergency and Trauma(Hainan Medical University)of the Ministry of Education,China,No.KLET-202210(to QZ)。
文摘Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,and necroptosis.Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia–reperfusion injury.However,its role in PANoptosis remains largely unknown.In this study,we demonstrated that voltage-dependent anion channel 1 oligomerization-mediated mitochondrial dysfunction was associated with PANoptosis in retinal ischemia–reperfusion injury.Inhibition of voltage-dependent anion channel 1 oligomerization suppressed mitochondrial dysfunction and PANoptosis in retinal cells subjected to ischemia–reperfusion injury.Mechanistically,mitochondria-derived reactive oxygen species played a central role in the voltagedependent anion channel 1-mediated regulation of PANoptosis by promoting PANoptosome assembly.Moreover,inhibiting voltage-dependent anion channel 1 oligomerization protected against PANoptosis in the retinas of rats subjected to ischemia–reperfusion injury.Overall,our findings reveal the critical role of voltage-dependent anion channel 1 oligomerization in regulating PANoptosis in retinal ischemia–reperfusion injury,highlighting voltage-dependent anion channel 1 as a promising therapeutic target.
基金the support received from the National Natural Science Foundation of China(Grant No.12302460)the State Key Laboratory of Explosion Science and Safety Protection(Grant No.YBKT24-02)。
文摘The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed.
基金Sponsored by the Scientific and Technological Project of Heilongjiang Province(Grant No.GD07A304)
文摘The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.
基金supported by the National Natural Science Foundation of China(51171118)
文摘Nanocrystalline TiN films were prepared by DC reactive magnetron sputtering.The influence of substrate biases on structure,mechanical and corrosion properties of the deposited films was studied using X-ray diffraction,field emission scanning electron microscopy,nanoindentation and electrochemical techniques.The deposited films have a columnar structure,and their preferential orientation strongly depends on bias voltage.The preferential orientations change from(200)plane at low bias to(111)plane at moderate bias and then to(220)plane at relatively high bias.Nanohardness H,elastic modulus E,H/E*and H3/E*2 ratios,and corrosion resistance of the deposited films increase first and then decrease with the increase in bias voltage.All the best values appear at bias of-120 V,attributing to the film with a fine,compact and less defective structure.This demonstrates that there is a close relation among microstructure,mechanical and corrosion properties of the TiN films,and the film with the best mechanical property can also provide the most effective corrosion protection.
基金Project Supported by National Natural Science Foundation of China(50407010)
文摘Recent events related to power system failure have shown that voltage collapse can be a cause of widespread outages.The thrust of this paper is to discuss and establish means of mitigating system voltage instability by using a combination of both reactive current droop compensation and line drop compensation.It is shown that the point that the voltage regulator controls can be defined by a new method which is based on a widely accepted voltage stability analysis tool.This tool can be used to determine which generators will have an impact on the maximum permissible loading of a bus.Dynamic analysis was carried out on the CIGRE Nordic test system to study the impact of control point location on time to collapse and it is shown that the new scheme can improve the voltage stability.
基金supported by the National Natural Science Foundation of China (Grant No. 60806021)
文摘This paper simulates reactive magnetron-sputtering in constant current mode in a Vanadium-O2/Ar system equipped with a DC power supply by adopting both kinetics model and Berg's model. The target voltage during the reactive sputtering has been investigated as a function of reactive gas flow. Both experiments and simulations demonstrate a hysteresis curve with respect to the oxygen supply. The time-dependent variation of the target mode is studied by measuring the target voltage for various reactive oxygen gas flows and pre-sputtering times. The pre- sputtering time increases with the increased initial target voltage. Furthermore, a corresponding time-dependent model simulating target voltage changes is also proposed. Based on these simulations, we find some relationships between the discharge voltage behaviour and the properties of the formed oxide. In this way, a better understanding of the target voltage changes during reactive sputtering can be achieved. We conclude that the presented theoretical models for parameter-dependent case and time-dependent case are in qualitative agreement with the experimental results and can be used to comprehend the target voltage behaviour in the deposition of vanadium oxide thin films.
文摘The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.
文摘This paper studies the reactive power and voltage coordinated control scheme. According to the characteristics of Hunan power grid, the coordinated schemes about Hunan power grid with Central China Power Grid, as well as Changsha power grid are proposed. At the same time, this paper builds a two-way interactive and multiple dispatching reactive power and voltage coordinated control mode, and can be successfully applied in Hunan power grid. The operation results show that this control scheme fulfills the ability of large power grids in optimal allocating of resources, effectively integrates the reactive power resources of the entire grid, achieves the purpose of reducing power grid loss, improving voltage quality, reducing the operating numbers of the reactive power equipment.
文摘In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.
文摘The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection theory. There have been presented selected theories application in order to compensate the reactive power in one-phase circuits. The measurement results before the compensation have been discussed and measurement results after compensation of an actual object supplied from an non-sinusoidal voltage source were presented. The algorithms of optimal capacity selection were given, which connected in parallel to the circuit with inductive character will cause current root-mean-square value minimization. The measurement results after applying the reactive power minimization algorithm have shown improvement in compensation of strongly nonlinear receivers supplied with distorted signals.
基金supported by Fondo Nacional de Desarrollo Científico y Tecnológico(FONDECYT)#1200836,#1210644,and#1240888,and Agencia Nacional de Investigación y Desarrollo(ANID)-FONDAP#15130011(to LL)FONDECYT#3230227(to MFG).
文摘Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.
基金supported by the National Natural Science Foundation of China(Grant No.12172052)the Foundation of State Key Laboratory of Explosion Science and Safety Protection(Grant No.QKKT24-02).
文摘The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly.
基金supported by the National Natural Science Foundation of China(Grant No.32472185)the Key Research and Development Program of Hubei Province,China(Grant No.2022BFE003)the Hubei Agriculture Science and Technology Innovation Center program,and the National Rice Industry Technology System,China(Grant No.CARS-01-07).
文摘Honglian type-cytoplasmic male sterility(HL-CMS)is caused by the inter-communication between the nucleus and mitochondria.However,the mechanisms by which sterility genes regulate metabolic alterations and changes in mitochondrial morphology in the pollen of HL-CMS remain unclear.In this study,we compared the morphological differences between the pollen of the male sterile line YA and the near-isogenic line NIL-Rf6 using hematoxylin-eosin staining and 4ʹ,6-diamidino-2-phenylindole(DAPI)staining.HL-CMS is characterized by gametophytic sterility,where the aborted pollen grains are empty,and the tapetal layer remains intact.Transmission electron microscopy was employed to observe mitochondrial morphological changes at the microspore stage,revealing significant mitochondrial alterations,characterized by the formation of'large spherical mitochondria',occurred at the binucleate stage in the YA line.Additionally,metabolomics analysis revealed decreased levels of metabolites associated with the carbohydrate and flavonoid pathways.Notably,the decrease in flavonoids was found to contribute to an elevation in reactive oxygen species(ROS)levels.Therefore,we propose a model in which rice fertility is modulated by the levels of pollen carbohydrates and flavonoid metabolites,with impaired mitochondrial energy production and reduced flavonoid biosynthesis as the main causes of ROS accumulation and pollen abortion in rice.
基金supported by the National Natural Science Foundation of China(52477221,52202296)the Natural Science Foundation of Shaanxi Province(2023KXJ-246,2022JQ-048)。
文摘Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance.
基金supported by the National Natural Science Foundation of China (Nos. 22379121, 62005216)Basic Public Welfare Research Program of Zhejiang (No. LQ22F050013)+1 种基金Zhejiang Province Key Laboratory of Flexible Electronics Open Fund (2023FE005)Shenzhen Foundation Research Program (No. JCYJ20220530112812028)。
文摘Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries.
基金supported by the National Key R&D Program of China(2022YFB3803505)National Natural Scientific Foundation of China(U21A2080&22479009)National Related Project and the Fundamental Research Funds for the Central Universities(FRF-TP-22-01C2)。
文摘Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs.
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.