期刊文献+
共找到139,347篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
1
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Impacts of PI3K/protein kinase B pathway activation in reactive astrocytes: from detrimental effects to protective functions 被引量:1
2
作者 Ramón Pérez-Núñez María Fernanda González +1 位作者 Ana María Avalos Lisette Leyton 《Neural Regeneration Research》 SCIE CAS 2025年第4期1031-1041,共11页
Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic ... Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively. 展开更多
关键词 inflammation INTEGRINS NEUROPROTECTIVE NEUROTOXIC phosphatidylinositol 3-kinase reactive astrocytes signal transduction Thy-1(CD90)
暂未订购
Penetration-deflagration coupling damage performance of rod-like reactive shaped charge penetrator impacting thick steel plates 被引量:1
3
作者 Tao Sun Haifu Wang +3 位作者 Shipeng Wang Jie Gong Wenhao Qiu Yuanfeng Zheng 《Defence Technology(防务技术)》 2025年第7期152-164,共13页
The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagra... The penetration-deflagration coupling damage performance of rod-like reactive shaped charge pene-trator(RRSCP)impacting thick steel plates is investigated by theoretical analysis and experiments.A penetration-deflagration coupling damage model is developed to predict the penetration depth and cratering diameter.Four type of aluminum-polytetrafluoroethylene-copper(Al-PTFE-Cu)reactive liners with densities of 2.3,2.7,3.5,and 4.5 g·cm^(-3) are selected to conduct the penetration experiments.The comparison results show that model predictions are in good agreement with the experimental data.By comparing the penetration depth and cratering diameter in the inert penetration mode and the penetration-deflagration coupling mode,the influence mechanism that the penetration-induced chemical response is unfavorable to penetration but has an enhanced cratering effect is revealed.From the formation characteristics,penetration effect and penetration-induced chemical reaction be-haviors,the influence of reactive liner density on the penetration-deflagration performance is further analyzed.The results show that increasing the density of reactive liner significantly increases both the kinetic energy and length of the reactive penetrator,meanwhile effectively reduces the weakened effect of penetration-induced chemical response,resulting in an enhanced penetration capability.However,due to the decreased diameter and potential energy content of reactive penetrator,the cratering capa-bility is weakened significantly. 展开更多
关键词 reactive materials Al-PTFE composites Penetration model Damage effect
在线阅读 下载PDF
High-voltage MIM-type aluminum electrolytic capacitors 被引量:1
4
作者 Yuan Guo Shixin Wang +5 位作者 Xianfeng Du Xinkuan Zang Zhongshuai Liang Jun Xiong Ruizhi Wang Zhuo Li 《Journal of Energy Chemistry》 2025年第5期79-90,共12页
Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and wate... Metal-insulator-metal aluminium electrolytic capacitors(MIM-AECs)combine high capacity-density and high breakdown field strength of solid AECs with high-frequency responsibility,wide workingtemperature window and waterproof properties of MIM nanocapacitors.However,interfacial atomic diffusion poses a major obstacle,preventing the high-voltage MIM-AECs exploitation and thereby hampering their potential and advantages in high-power and high-energy-density applications.Here,an innovative high-voltage MIM-AECs were fabricated.The AlPO_(4)buffer layer is formed on AlO(OH)/AAO/Al surface by using H_(3)PO_(4)treatment,then a stable van der Waals(vdW)SnO_(2)/AlPO_(4)/AAO/Al multilayer was constructed via atomic layer deposition(ALD)technology.Due to higher diffusion barrier and lower carrier migration of SnO_(2)/AlPO_(4)/AAO interfaces,Sn atom diffusion is inhibited and carrier acceleration by electric field is weakened,guaranteeing high breakdown field strength of dielectric AAO and avoiding local breakdown risks.Through partial etching to hydrated AlO(OH)by H_(3)PO_(4)treatment,the tunnel was further opened up to facilitate subsequent ALD-SnO_(2)entry,thus obtaining a high SnO_(2)coverage.The SnO_(2)/AlPO_(4)/AAO/Al capacitors show a comprehensive performance in high-voltage(260 V),hightemperature(335℃),high-humidity(100%RH)and high-frequency response(100 k Hz),outperforming commercial solid-state AECs,and high-energy density(8.6μWh/cm^(2)),markedly exceeding previously reported MIM capacitors.The work lays the foundation for next-generation capacitors with highvoltage,high-frequency,high-temperature and high-humidity resistance. 展开更多
关键词 MIM nanocapacitor Electrolytic capacitor Buffer layer Atomic layer deposition High voltage
在线阅读 下载PDF
Attenuating reductive decomposition of fiuorinated electrolytes for high-voltage lithium metal batteries 被引量:1
5
作者 Zhen-Zhen Dong Jin-Hao Zhang +4 位作者 Lin Zhu Xiao-Zhong Fan Zhen-Guo Liu Yi-Bo Yan Long Kong 《Chinese Chemical Letters》 2025年第4期416-419,共4页
Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. Ho... Fluoride-based electrolyte exhibits extraordinarily high oxidative stability in high-voltage lithium metal batteries(h-LMBs) due to the inherent low highest occupied molecular orbital(HOMO) of fiuorinated solvents. However, such fascinating properties do not bring long-term cyclability of h-LMBs. One of critical challenges is the interface instability in contacting with the Li metal anode, as fiuorinated solvents are highly susceptible to exceptionally reductive metallic Li attributed to its low lowest unoccupied molecular orbital(LUMO), which leads to significant consumption of the fiuorinated components upon cycling.Herein, attenuating reductive decomposition of fiuorinated electrolytes is proposed to circumvent rapid electrolyte consumption. Specifically, the vinylene carbonate(VC) is selected to tame the reduction decomposition by preferentially forming protective layer on the Li anode. This work, experimentally and computationally, demonstrates the importance of pre-passivation of Li metal anodes at high voltage to attenuate the decomposition of fiuoroethylene carbonate(FEC). It is expected to enrich the understanding of how VC attenuate the reactivity of FEC, thereby extending the cycle life of fiuorinated electrolytes in high-voltage Li-metal batteries. 展开更多
关键词 Li metal batteries Solid electrolyte interphase High voltage Fluorinated electrolyte Electrolyte decomposition
原文传递
Sulfolane‑Based Flame‑Retardant Electrolyte for High‑Voltage Sodium‑Ion Batteries
6
作者 Xuanlong He Jie Peng +15 位作者 Qingyun Lin Meng Li Weibin Chen Pei Liu Tao Huang Zhencheng Huang Yuying Liu Jiaojiao Deng Shenghua Ye Xuming Yang Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Biwei Xiao Jiangtao Hu Qianling Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期498-516,共19页
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p... Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes. 展开更多
关键词 Sodium-ion batteries Sulfolane-based electrolyte High voltage Layered oxide cathode Flame retardant
在线阅读 下载PDF
Modeling and control of automatic voltage regulation for a hydropower plant using advanced model predictive control 被引量:1
7
作者 Ebunle Akupan Rene Willy Stephen Tounsi Fokui 《Global Energy Interconnection》 2025年第2期269-285,共17页
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont... Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations. 展开更多
关键词 Automatic voltage regulation Artificial bee colony Evolutionary techniques Model predictive control PID controller HYDROPOWER
在线阅读 下载PDF
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
8
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
Novel mouse model of Alzheimer's disease exhibits pathology through synergistic interactions among amyloid-β,tau,and reactive astrogliosis 被引量:1
9
作者 Young-Eun Han Sunhwa Lim +2 位作者 Seung Eun Lee Min-Ho Nam Soo-Jin Oh 《Zoological Research》 2025年第1期41-53,共13页
Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrog... Alzheimer'sdisease(AD)isaprogressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features,including amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis.Developing effective diagnostic,preventative,and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease.Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.Additionally,these models are limited in their ability to elucidate the interplay among amyloid-βplaques,neurofibrillary tangles,and reactive astrogliosis due to the absence of spatially and temporally specific genetic manipulation.In this study,we introduce a novel AD mouse model(APP/PS1-TauP301L-Adeno mice)designed to rapidly induce pathological symptoms and enhance understanding of AD mechanisms.Neurofibrillary tangles and severe reactive astrogliosis were induced by injecting AAVDJ-EF1a-hTauP301L-EGFP and Adeno-GFAP-GFP viruses into the hippocampi of 5-month-old APP/PS1 mice.Three months post-injection,these mice exhibited pronounced astrogliosis,substantial amyloid-βplaque accumulation,extensiveneurofibrillarytangles,accelerated neuronal loss,elevated astrocytic GABA levels,and significant spatial memory deficits.Notably,these pathological features were less severe in AAVTauP301L-expressing APP/PS1 mice without augmented reactive astrogliosis.These findings indicate an exacerbating role of severe reactive astrogliosis in amyloid-βplaque and neurofibrillary tangle-associated pathology.The APP/PS1-TauP301L-Adeno mouse model provides a valuable tool for advancing therapeutic research aimed at mitigating the progression of AD. 展开更多
关键词 Alzheimer's disease mouse model Neurofibrillary tangles Amyloid-βplaques reactive astrogliosis Alzheimer’s disease pathology
暂未订购
Dynamic Behavior,Energetic Characteristics,and Failure Mechanism of High-Density W-Zr-Ti Reactive Alloy
10
作者 Qi Yuxuan Mao Liang +3 位作者 Li Peiying Liu Guitao Tian Longnian Jiang Chunlan 《稀有金属材料与工程》 北大核心 2025年第7期1687-1696,共10页
A high-density tungsten-zirconium-titanium(W-Zr-Ti)reactive alloy was prepared by powder metallurgy.This alloy exhibits high density,high strength,and violent energy release characteristics,resulting in outstanding pe... A high-density tungsten-zirconium-titanium(W-Zr-Ti)reactive alloy was prepared by powder metallurgy.This alloy exhibits high density,high strength,and violent energy release characteristics,resulting in outstanding penetration and ignition abilities.Dynamic impact experiment demonstrated its strain rate hardening effect,and the energetic characteristics were investigated by digital image processing technique and thermal analysis experiment.The results show that W-Zr-Ti reactive alloy performs compressive strength of 2.25 GPa at 5784 s^(-1)strain rate,and its exothermic reaction occurs at about 961 K.Based on the explosion test and shock wave theory,thresholds of enhanced damage effect are less than 35.77 GPa and 5.18×10^(4)kJ/m^(2)for shock pressure and energy,respectively.Furthermore,the transformation of fracture behavior and failure mechanism is revealed,which causes the increase in compressive strength and reaction intensity under dynamic loading. 展开更多
关键词 reactive alloy dynamic behavior energetic characteristics failure mechanism
原文传递
Tuning the reactivity of TiO_(2)layer with uniform distribution of Sub-5 nm Fe_(2)O_(3)particles via in situ voltage-assisted oxidation for robust catalytic reduction 被引量:1
11
作者 Nisa Nashrah Abdelkarim Chaouiki +1 位作者 Wail Al Zoubi Young Gun Ko 《Nano Materials Science》 EI CAS CSCD 2024年第2期223-234,共12页
The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)... The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)O_(3)nanoparticles(NP)by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach.In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe_(2)O_(3)NP embedded within porous TiO_(2)layer.Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO_(2)due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe;it also unexpectedly increased the active site in the TiO_(2)layer due to uncoordinated electrons in Sub-5 nm Fe_(2)O_(3)NP/TiO_(2)catalyst,thereby enhancing the adsorption of chemical functional groups on the catalyst.This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol,achieving approximately 99%efficiency in 20 min without stability decay after 20 consecutive cycles,outperforming previously reported TiO_(2)-based catalysts.This finding proposes a modified-electrochemical strategy enabling facile construction of TiO_(2)with nanoscale oxides extandable to other metal oxide systems. 展开更多
关键词 Titanium dioxide Oxide nanoparticle Electrochemical oxidation Surface reactivity Efficiency Stability
在线阅读 下载PDF
Real-Time Error Analysis of Multi-Channel Capacitive Voltage Transformer Using Co-Prediction Matrix
12
作者 Jiusong Hu Ao Xiong +2 位作者 Yongqi Liu Guaxuan Xiao Yi Zhong 《Journal of Power and Energy Engineering》 2025年第1期1-17,共17页
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage... Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations. 展开更多
关键词 Capacitive voltage Transformers Co-Prediction Matrix HIGH-voltage Measurement error
在线阅读 下载PDF
Influence of Magnetic Field and Temperature on the Transient Density and Voltage in a Radial Junction Solar Cell in Dynamic Regime under Pulsed Multispectral Illumination
13
作者 Moussa Ouedraogo Nazé Yacouba Traore +2 位作者 Alain Diasso Raguilignaba Sam François Zougmore 《Open Journal of Applied Sciences》 2025年第1期42-52,共11页
This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junctio... This study examines the influence of magnetic field and temperature on the transient voltage of a polycrystalline silicon radial junction solar cell in a dynamic regime under multispectral illumination. Radial junction solar cells represent a major advancement in photovoltaic technologies, as they optimize light absorption and charge collection efficiency. The focus is on the impact of the magnetic field and temperature on the decay of transient voltage, which provides crucial information on recombination processes and the lifetime of minority carriers. The results reveal that the magnetic field tends to increase the transient voltage by directly affecting the transient electron density. Indeed, for B > 7 × 10−5 T, the magnetic field prolongs the relaxation time by increasing the transient voltage amplitude. Additionally, rising temperatures accelerate (ranging from 290 K to 450 K) recombination processes, thereby reducing the transient voltage, although this effect is moderated by the presence of a magnetic field. The study highlights the complex interaction between magnetic field and temperature, with significant impacts on the transient behaviour. 展开更多
关键词 ELECTRONS Radial Junction Transient voltage Magnetic Field Operating Temperature
在线阅读 下载PDF
基于light-oxygen-voltage(LOV)结构域光敏剂的细胞毒性研究
14
作者 许爽 万奔 +1 位作者 沙娜 赵开弘 《生物化学与生物物理进展》 北大核心 2025年第2期487-500,共14页
目的光敏剂被特定波长的光激发后,产生的活性氧类能破坏细胞组织,介导细胞死亡,对微生物感染、肿瘤等相关疾病的治疗具有重要意义。方法基于粳稻类向光素1B(Oryza sativa japonica phototropin-1B-like)的LOV(lightoxygen-voltage)结构... 目的光敏剂被特定波长的光激发后,产生的活性氧类能破坏细胞组织,介导细胞死亡,对微生物感染、肿瘤等相关疾病的治疗具有重要意义。方法基于粳稻类向光素1B(Oryza sativa japonica phototropin-1B-like)的LOV(lightoxygen-voltage)结构域,设计得到光敏剂LovPSO2及其突变体LovPRO2。在445 nm、70μmol·m^(-2)·s^(-1)蓝光照射下,每隔2 min测量LovPSO2和LovPRO2的单线态氧产量,持续10 min,每隔1 min测量其超氧阴离子产量,持续5 min,并研究温度、光照对其稳定性的影响,最后将其转入E.coli BL21(DE3)和HeLa细胞中表达并分析光毒性效果。结果在445 nm、70μmol·m^(-2)·s^(-1)蓝光照射下,LovPSO2是一种能产生大量单线态氧的Ⅱ型光敏剂(ΦΔ=0.61),LovPRO2是一种能够同时产生单线态氧和超氧阴离子的光敏剂。蛋白质稳定性分析结果表明,LovPSO2和LovPRO2具有较好的温度稳定性,其中LovPRO2的光稳定性更好。蛋白质的光毒性分析结果表明,445 nm、30 mW/cm^(2)蓝光照射30 min后,LovPSO2和LovPRO2对E.coli BL21(DE3)菌株有较好的光毒性,致死率高达90%。结论LovPSO2和LovPRO2可作为抗菌光敏剂,在食品和医疗等方面均有较为广阔的应用前景。 展开更多
关键词 光敏剂 活性氧类 单线态氧 超氧阴离子
原文传递
A Low Common-Mode Voltage Virtual Space Vector Modulation of Three-Level Converters for Doubly-Fed Variable-Speed Pumped Storage Systems
15
作者 Ziqiang Man Lei Zhao +6 位作者 Zheng Tao Shiming Cheng Wei Yan Gaoyue Zhong Yu Lu Wenming Zhang Li Zhang 《Energy Engineering》 2025年第9期3555-3572,共18页
With the rapid integration of renewable energy sources,modern power systems are increasingly challenged by heightened volatility and uncertainty.Doubly-fed variable-speed pumped storage units(DFVS-PSUs)have emerged as... With the rapid integration of renewable energy sources,modern power systems are increasingly challenged by heightened volatility and uncertainty.Doubly-fed variable-speed pumped storage units(DFVS-PSUs)have emerged as promising technologies for mitigating grid oscillations and enhancing system flexibility.However,the excitation converters in DFVS-PSUs are prone to significant issues such as elevated common-mode voltage(CMV)and neutral-point voltage(NPV)fluctuations,which can lead to electromagnetic interference and degrade transient performance.To address these challenges,an optimized virtual space vector pulse width modulation(OVSVPWM)strategy is proposed,aiming to suppress CMV and NPV simultaneously through coordinated multi-objective control.Specifically,a dynamic feedback mechanism is introduced to adjust the balancing factor of basic vectors in the synthesized virtual small vector in real-time,achieving autonomous balancing of the NPV.To address the excessive switching actions introduced by the OVSVPWM strategy,a phase duty ratio-based sequence reconstruction method is adopted,which reduces the total number of switching actions to half of the original.A zero-level buffering scheme is employed to reconstruct the single-phase voltage-level output sequence,achieving peak CMV suppression down to udc/6.Simulation results demonstrate that the proposed strategy significantly improves electromagnetic compatibility and operational stability while maintaining high power quality. 展开更多
关键词 Doubly-fed variable-speed pumped storage units three-level excitation converter common-mode voltage neutral-point voltage virtual space voltage vector
在线阅读 下载PDF
Voltage-dependent anion channel 1 oligomerization regulates PANoptosis in retinal ischemia–reperfusion injury 被引量:1
16
作者 Hao Wan Xiaoxia Ban +6 位作者 Ye He Yandi Yang Ximin Hu Lei Shang Xinxing Wan Qi Zhang Kun Xiong 《Neural Regeneration Research》 2026年第4期1652-1664,共13页
Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,... Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,and necroptosis.Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia–reperfusion injury.However,its role in PANoptosis remains largely unknown.In this study,we demonstrated that voltage-dependent anion channel 1 oligomerization-mediated mitochondrial dysfunction was associated with PANoptosis in retinal ischemia–reperfusion injury.Inhibition of voltage-dependent anion channel 1 oligomerization suppressed mitochondrial dysfunction and PANoptosis in retinal cells subjected to ischemia–reperfusion injury.Mechanistically,mitochondria-derived reactive oxygen species played a central role in the voltagedependent anion channel 1-mediated regulation of PANoptosis by promoting PANoptosome assembly.Moreover,inhibiting voltage-dependent anion channel 1 oligomerization protected against PANoptosis in the retinas of rats subjected to ischemia–reperfusion injury.Overall,our findings reveal the critical role of voltage-dependent anion channel 1 oligomerization in regulating PANoptosis in retinal ischemia–reperfusion injury,highlighting voltage-dependent anion channel 1 as a promising therapeutic target. 展开更多
关键词 1-methyl-4-phenyl-1 2 3 6-TETRAHYDROPYRIDINE apoptosis ischemia–reperfusion injury mitochondrial dysfunction NECROPTOSIS oxidative stress PANoptosis PYROPTOSIS reactive oxygen species voltage-dependent anion channel 1
暂未订购
Back-gate bias and supply voltage dependency on the single-event upset susceptibility of 6 T CSOI-SRAM
17
作者 Li-Wen Yao Jin-Hu Yang +12 位作者 Yu-Zhu Liu Bo Li Yang Jiao Shi-Wei Zhao Qi-Yu Chen Xin-Yu Li Tian-Qi Wang Fan-Yu Liu Jian-Tou Gao Jian-Li Liu Xing-Ji Li Jie Liu Pei-Xiong Zhao 《Nuclear Science and Techniques》 2025年第9期105-115,共11页
This paper explores the impact of back-gate bias (V_(soi)) and supply voltage (V_(DD)) on the single-event upset (SEU) cross section of 0.18μm configurable silicon-on-insulator static random-access memory (SRAM) unde... This paper explores the impact of back-gate bias (V_(soi)) and supply voltage (V_(DD)) on the single-event upset (SEU) cross section of 0.18μm configurable silicon-on-insulator static random-access memory (SRAM) under high linear energy transfer heavyion experimentation.The experimental findings demonstrate that applying a negative back-gate bias to NMOS and a positive back-gate bias to PMOS enhances the SEU resistance of SRAM.Specifically,as the back-gate bias for N-type transistors(V_(nsoi)) decreases from 0 to-10 V,the SEU cross section decreases by 93.23%,whereas an increase in the back-gate bias for P-type transistors (V_(psoi)) from 0 to 10 V correlates with an 83.7%reduction in SEU cross section.Furthermore,a significant increase in the SEU cross section was observed with increase in supply voltage,as evidenced by a 159%surge at V_(DD)=1.98 V compared with the nominal voltage of 1.8 V.To explore the physical mechanisms underlying these experimental data,we analyzed the dependence of the critical charge of the circuit and the collected charge on the bias voltage by simulating SEUs using technology computer-aided design. 展开更多
关键词 Single-event upset(SEU) Static random-access memory(SRAM) Back-gate voltage Supply voltage
在线阅读 下载PDF
Output Voltage Stabilization of Non-Ideal DC-DC Zeta Converter with Output Voltage Error Elimination via Hybrid Control
18
作者 Hafez Sarkawi Noridah Mohd Ridzuan +1 位作者 Muhammad Idzdihar Idris Mohd Syafiq Mispan 《Journal of Power and Energy Engineering》 2025年第1期18-31,共14页
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t... In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results. 展开更多
关键词 Continuous Conduction Mode DC-DC Zeta Converter Hybrid Control Output voltage Error Switching Control Law Switching Frequency
在线阅读 下载PDF
Design of Voltage Equalization Circuit and Control Method for Lithium-ion Battery Packs
19
作者 Qi Wang Lantian Ge +4 位作者 Tianru Xie Yibo Huang Yandong Gu Tao Zhu Xuehua Gao 《Energy Engineering》 2025年第2期733-746,共14页
The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper p... The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge. 展开更多
关键词 Lithium-ion battery voltage balancing control single-capacitor method
在线阅读 下载PDF
Reactive oxygen species generation by organic materials for efficient photocatalysis
20
作者 Qing Liu Tangxin Xiao +1 位作者 Zhouyu Wang Leyong Wang 《Chinese Chemical Letters》 2025年第10期1-3,共3页
Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and... Reactive oxygen species(ROS),including singlet oxygen(^(1)O_(2)),hydroxyl radicals(·OH),and superoxide anions(O_(2)^(·-)),are highly reactive molecules that play central roles in many chemical,biological,and environmental processes due to their strong oxidative power[1].Generating ROS in a controlled manner under mild conditions is essential for achieving selective oxidation reactions.Light-driven methods are especially appealing for this purpose,as they offer precise control over where and when ROS are produced. 展开更多
关键词 superoxide anions o hydroxyl radicals superoxide anions reactive oxygen species singlet oxygen reactive oxygen species ros including selective oxidation reactionslight driven PHOTOCATALYSIS
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部