Most of the massive sulfide deposits (VMS) occurring from Precambrian to Cenozoic throughout the world has been subsequently metamorphosed at various grades. Thus, all the original textures have been either completely...Most of the massive sulfide deposits (VMS) occurring from Precambrian to Cenozoic throughout the world has been subsequently metamorphosed at various grades. Thus, all the original textures have been either completely destroyed or strongly modified. However, there are a very few examples, rather younger deposits such as late Cretaceous Turkish VMS deposits and Miocene Kuroko deposits of Japan in which representative and original ore textures are preserved. The Turkish massive sulfide deposits are mainly Cu-Zn-Pb-type and entirely hosted by Late Cretaceous felsic volcanic rocks within a paleoarc geotectonic setting.展开更多
Geologically representative feature engineering is a crucial component in geoscientific applications of machine learning.Many commonly applied feature engineering techniques used to produce input variables for machine...Geologically representative feature engineering is a crucial component in geoscientific applications of machine learning.Many commonly applied feature engineering techniques used to produce input variables for machine learning apply geological knowledge to generic data science techniques,which can lead to ambiguity,geological oversimplification,and/or compounding subjective bias.Workflows that utilize minimally processed input variables attempt to overcome these issues,but often lead to convoluted and uninterpretable results.To address these challenges,new and enhanced feature engineering methods were developed by combining geological knowledge,understanding of data limitations,and a variety of data science techniques.These include non-Euclidean fluid pre-deformation path distance,rheological and chemical contrast,geologically constrained interpolation of characteristic host rock geochemistry,interpolation of mobile element gain/loss,assemblages,magnetic intensity,structural complexity,host rock physical properties.These methods were applied to compiled open-source and new field observations from Archean greenstone terranes in the Abitibi and western Wabigoon sub-provinces of the Superior Province near Timmins and Dryden,Ontario,respectively.Resulting feature maps represent conceptually significant components in magmatic,volcanogenic,and orogenic mineral systems.A comparison of ranked feature importance from random forests to conceptual mineral system models show that the feature maps adequately represent system components,with a few exceptions attributed to biased training data or limited constraint data.The study also highlights the shared importance of several highly ranked features for the three mineral systems,indicating that spatially related mineral systems exploit the same features when available.Comparing feature importance when classifying orogenic Au mineralization in Timmins and Dryden provides insights into the possible cause of contrasting endowment being related to fluid source.The study demonstrates that integrative studies leveraging multidisciplinary data and methodology have the potential to advance geological understanding,maximize data utility,and generate robust exploration targets.展开更多
In this paper, we present textures, trace element compositions, and sulfur isotope data for pyrite from the Honghai volcanogenic massive sulfide deposit to place new constraints on the source and evolution of the ore-...In this paper, we present textures, trace element compositions, and sulfur isotope data for pyrite from the Honghai volcanogenic massive sulfide deposit to place new constraints on the source and evolution of the ore-forming fluids and provide insights into the ore genesis with implications for future exploration. The Honghai deposit consists of upper lenticular ores comprising massive sulfides that are underlain by stockwork and disseminated sulfides. The textural and isotopic characteristics of the synsedimentary framboidal pyrite(Syn-Py) indicate its formation by biogenetic processes. Coarse-grained pyrite generations(M-Py1, M-Py2, and M-Py3) from the massive sulfides have high Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations and low Co, Se, Te, Ti, and Sn concentrations, indicating that they precipitated from metal-rich, low-to intermediate-temperature,oxidizing fluids. The high Te, Ti, and Sn concentrations and high Co/Ni ratios in the massive pyrite(M-Py4) associated with magnetite in the massive sulfide lenses, as well as the high Ti, V, Cr, and Ni concentrations and low Al, Mn, and Zn concentrations in the magnetite, suggest that the coexisting M-Py4 and magnetite precipitated under oxidizing and hightemperature(300℃ to 500℃) conditions. In contrast, pyrite grains from the underlying stockwork and veins(V-Py1, V-Py2, and V-Py3) are characterized by low Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations coupled with high Co, Se, Te, and Ti concentrations and high Co/Ni ratios, which are interpreted in terms of reducing and high-temperature ore-forming fluids. The large variations in δ^(34)S values from-6.4‰ to +29.9‰ suggest that the ore-forming fluids were derived from magmatic source that were significantly modified by seawater. The spatial variations of trace element assemblages of pyrite from different levels of the main massive orebodies can be used as an indicator for mineral exploration of Cu-Zn ores in the Honghai deposit.Although no significant difference in δ34S values is observed between the upper massive sulfide lenses and lower stockwork/vein zone, the spiky δ34S pattern noted in the massive pyrite can be used as a marker for the main massive orebodies.展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogen...In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogenic Belt (CAOB). The CAOB is a complex collage of ancient microcontinents, island arcs, oceanic plateaux and oceanic plates, which were amalgamated and accreted in Early Palaeozoic to Early Permian times. The establishment of the CAOB collage was followed by strike-slip movements and affected by intraplate magmatism, linked to mantle plume activity, best exemplified by the 250 Ma Siberian Traps and the 280 Ma Tarim event. In northern Xinjiang, there ale numerous and economically important mineral systems. In this contribution we describe a selection of representative mineral deposits, including subduction-related porphyry and epithermal deposits, volcanogenic massive sulphides and skarn systems. Shear zone-hosted Au lodes may have first formed as intrusion-related and subsequently re-worked during strike-slip deformation. Intraplate magmatism led to the emplacement of concentrically zoned (Alaskan-style) mafic-ultramafic intrusions, many of which host orthomagmatic sulphide deposits. A huge belt of pegmatites in the Altay orogen, locally hosts world-class rare metal deposits. Roll-front,展开更多
The 40Ar-39Ar age method is employed in this work to analyze fluid inclusions of quartz in the ore bodies from the Kuo'erzhenkuola and Bu'erkesidai gold deposits in the Sawur gold belt, northern Xinjiang. The ...The 40Ar-39Ar age method is employed in this work to analyze fluid inclusions of quartz in the ore bodies from the Kuo'erzhenkuola and Bu'erkesidai gold deposits in the Sawur gold belt, northern Xinjiang. The results show that the main mineralization occurred in 332.05±2.02-332.59±0.51 Ma and 335.53±0.32 Ma-336.78±0.50 Ma for the Kuo'erzhenkuola and Bu'erkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic time of the two deposits are close to those of the hosting rocks formed by volcanic activity of the Sawur gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits, and identifies that in the Hercynian period, the Altay area developed a tectonic-magmatic-hydrothermal mineralization of the Early Carboniferous period, except the two known mineralization periods including the tectonic-magmatic-hydrothermal mineralization of the Devonian period and Late Carboniferous- Permian period.展开更多
Water-rich clay to sand suspensions show a shear rate dependent flow behavior and knowledge of the appropriate rheological model is relevant for sedimentological, industrial and hydraulic studies. We present experimen...Water-rich clay to sand suspensions show a shear rate dependent flow behavior and knowledge of the appropriate rheological model is relevant for sedimentological, industrial and hydraulic studies. We present experimental rheological measurements of water-rich(40 to 60 wt%) clay to silt(population A) and silt to sand(population B) suspensions mixed in different proportions. The data evidence a shear rate dependent shear thinning-shear thickening transition. At lower shear rates, the suspensions organize in chains of particles, whereas at higher shear rates, these chains disrupt so increasing the viscosity. The viscosity, consistency and yield stress decrease as the A+B fraction decreases as the content of B particles increases. This behavior reflects the competing effects of the lubrication and frictional processes as a function of particle size and water content. Transitional flows form by the incorporation of small amounts of the finer fraction while ‘oceanic floods’ form at the estuary of rivers and the submarine debris-flows increase their velocity by incorporating water. The critical Reynolds number of the studied suspensions is ~2000±100 suggesting that the grainsize plays a major role in the laminar to turbulent transition. Our results have implications for the modeling of sediment flows and the hazard related to floods.展开更多
The Gacun Kuroko-type deposit, Southwestern China, is hosted in rhyolitic rocks associated with the underlying mafic rocks occurred in the - 1000 m deep fault - bounded basin within the intra -arc rifting zone which f...The Gacun Kuroko-type deposit, Southwestern China, is hosted in rhyolitic rocks associated with the underlying mafic rocks occurred in the - 1000 m deep fault - bounded basin within the intra -arc rifting zone which formed on the Triassic Yidun island - arc. Two vertically separated alteration systems are recognized: one is conformable or semiconformable alteration zone developed in - 150 m thick mafic unit 1-1.5 km below the massive sulfide ore body; the other is discordant alteration pipe directly surrounded around stockwork ore within rhyolitic unit. The lower conformable alteration zone extending for several kilometers along strike is characterized by silicification and epidotization which result in the development of quartz vein and quartz-epidote vein systems in mafic lava flows and replacement of primary minerals and groundmass in spilitized mafic volcanics and dikes by quartz, epidote - group minerals and sodic plagioclase. Sulfides often occur in the vein system and altered mafic volcanics. Quartz solubility relation indicates that silicification is a consequence of interaction of Si- saturated fluids with mafic rocks in a higher temperature system (T>340℃), intensifying by intrusion of mafic dike or high-level acidic magma chamber. The alteration pipe of diameter about 2 km shows a similar mineralogical zoning to Kuroko deposits of Japan. The sequence is quartz + hyalophane; sericite + chlorite + quartz and zeolite-like zones from core to margins of the pipe. The chlorite core only occurs in the root part of the alteration pipe and downwards transfers into epidote - chlorite and epidote - quartz vein swarm extending 500 m downwards. The felsic rocks away from the orebody and alteration pipe took place district-scale alteration, which has typical low-temperature mineral association: illite + albite + quartz + calcite. Whole -rock and quartz δ18O values indicate that district - scale alteration is a result of interaction of seawater with rocks at lower temperature (T<200℃)under water-dominated condition. However, the altered rocks from the pipe show remarkably δ18O enrichment, and bulk -rock δ18O values decreased gradually toward stockwork orebody from 15.1‰-l5. 75‰ in zeolite-like zone and 12. 05‰-14. 2‰ in sericite - quartz zone to 11.3 ‰ - 14. 4‰ in quartz - hyalophane zone. The filled temperatures of fluid inclusions in quartz and sphalerite lie in the ranges of 280 -320 ℃ for quartz - hyalophane zone and 250 ℃ to 297 ℃ for sericite-quartz zone. The estimated δ18O values of hydrothermal fluids are 7. 98‰ and3.2‰, respectively, based on quartz δ18O data in the deposit. The lower conformable alteration is considered to be approximately coeval with the alteration pipe, based on the SiO2 concentration in the fluids, which restrict the main fluid - rock reaction zone to be located in mafic horizon by quartz barometer, and metal element flux calculation and sulfide - epidote vein system developed both in alteration systems. High - salinity fluid inclusions in gangue quartz (>8% eq. NaCl) from stockwork ore and in quartz phenocryst (>40% eq. NaCl) in footwall rhyolite strongly suggest the existence of hot-saline brine to react with mafic complex and leach metal components, which probably originates mainly from magmatic fluid derived from high-level acidic magma chamber. The brine layer located in mafic unit possibly heats and drives the overlying single -pass convective seawater reacting with felsic rocks. The 'density window' may be expected to occur on the interface between seawater and brine layer, when the brine becomes to be gravitationally instability by the turbulent entrainment of seawater during magmatic and/or tectonic activities. The sulfide mineralization and alteration pipe is inter preted as an effect of the 'density window' through which the mixed fluids of brine with seawater adiabatically discharges upwards.展开更多
This paper presents the results of systematic, ecopathological, and chorological studies of the diversity of the subnival belt (zone) flora of the Caucasus Mountains, peculiarity of altitudinal distribution, endemis...This paper presents the results of systematic, ecopathological, and chorological studies of the diversity of the subnival belt (zone) flora of the Caucasus Mountains, peculiarity of altitudinal distribution, endemism and florogenesis. Comparative analysis of the diversity of the subnival flora on different types of stone and at different altitudes in various parts of the Caucasus has been made. It is based on field investigation and on literature research. 226 species, 96 genera and 35 families were recorded in the subnival belt of the Caucasus within a range of 2,800 (2,900)-4,000 m a.s.l. Among these 117 species or 51% are common endemics of the Greater Caucasus and Caucasus. It is proved that floristic elements of different origin (authochronic and aloctonic) and age (Miocene-Pliocene and Pleistocene) contributed to the florogenesis of the subnival belt of the Caucasus. The Caucasian, the Eu-Caucasian, the Eastern Asian, the Minor Asian, the Dagestan-lranian, the Caucasia-European groups plaied an important role in the florogenesis. Criophilic evolution on the of the some plants was related to oreophytizacion during formation of the Caucasus mountains (in the second half of the Tertiary), as well as the glaciations scale. Species composition and coenotic role are different in various parts of the Caucasus and within each part. This is conditioned by the different hypsometry of various parts of the Caucasus, the character of glatiations, edaphic and climatic conditions, lythological diversity. Compared with the Greater Caucasus, the relative floristic poverty of the Lesser Caucasus is due to low elevations and extensive rather recent vulcanism.展开更多
The Kuoerzhenkuola gold field (including the Kuoerzhenkuola and the Buerkesidai gold deposits) is the most important one in the Sawuer gold belt, northern Xinjiang, China. Iso-topic studies including D, O, He, C, S, P...The Kuoerzhenkuola gold field (including the Kuoerzhenkuola and the Buerkesidai gold deposits) is the most important one in the Sawuer gold belt, northern Xinjiang, China. Iso-topic studies including D, O, He, C, S, Pb and Sr reveal that the ore-forming fluids of the Kuo-erzhenkuola and the Buerkesidai deposits shared the same source: the water of ore fluids was magmatic water and minor meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two depos-its are a mixture of mantle-derived fluids incorporated by crust-derived fluid, and meteoric water. Based on these results, combined with the consideration of the tectonic setting and geological features, we suggest that the two gold deposits in the Kuoerzhenkuola gold field, Sawur gold belt share the same genesis, and are volcanogenic hydrothermal gold deposits occurring in the same caldera.展开更多
Beryllium(Be)is one of the unsubstitutable key metals in strategic emerging industries and national defense industries,mainly originating from volcanogenic Be deposits.Thus,volcanogenic Be deposits have become importa...Beryllium(Be)is one of the unsubstitutable key metals in strategic emerging industries and national defense industries,mainly originating from volcanogenic Be deposits.Thus,volcanogenic Be deposits have become important research objects of key metal deposits,with a focus on their occurrence,metallogenic mechanism,and resource distribution.In the southeast coast of China,the Late Mesozoic volcanic intrusive complex has a good Be metallogenic background,and strong Be mineralization occurs in some areas.Field geological investigation and analyses of samples from Southeast Zhejiang as well as Northeast and Southeast Fujian indicate that Be mineralization in the southeast coast of China is closely related to the hydrothermal processes in the volcanic intrusive complex.In Southeast Zhejiang,Be ore in the Qingtian area mainly occurs in granite porphyry,with the Be content reaching 939 ppm,while strong Be mineralization from Zhangji rhyolite porphyry in the Pingyang area contains up to 11400 ppm Be.In Xiapu County,Northeastern Fujian,the Dawan Be deposit is characterized by constituents of helvite and beryl.In Pinghe County,Southeastern Fujian,the Fulishi Be ore is a quartz vein beryl-type ore.These results suggest that the volcanic intrusive complex area in the southeast coast of China has a wide range of Be mineralization and better Be metallogenic potential,and it is expected to become an important Be metallogenic belt in China.Thus,we should thoroughly investigate the Be resources of granite porphyry,rhyolite porphyry,quartz porphyry,and quartz vein in this volcanic rock area,which can provide a theoretical basis for the exploration and guiding prospecting of volcanic intrusive complex Be deposits.展开更多
文摘Most of the massive sulfide deposits (VMS) occurring from Precambrian to Cenozoic throughout the world has been subsequently metamorphosed at various grades. Thus, all the original textures have been either completely destroyed or strongly modified. However, there are a very few examples, rather younger deposits such as late Cretaceous Turkish VMS deposits and Miocene Kuroko deposits of Japan in which representative and original ore textures are preserved. The Turkish massive sulfide deposits are mainly Cu-Zn-Pb-type and entirely hosted by Late Cretaceous felsic volcanic rocks within a paleoarc geotectonic setting.
文摘Geologically representative feature engineering is a crucial component in geoscientific applications of machine learning.Many commonly applied feature engineering techniques used to produce input variables for machine learning apply geological knowledge to generic data science techniques,which can lead to ambiguity,geological oversimplification,and/or compounding subjective bias.Workflows that utilize minimally processed input variables attempt to overcome these issues,but often lead to convoluted and uninterpretable results.To address these challenges,new and enhanced feature engineering methods were developed by combining geological knowledge,understanding of data limitations,and a variety of data science techniques.These include non-Euclidean fluid pre-deformation path distance,rheological and chemical contrast,geologically constrained interpolation of characteristic host rock geochemistry,interpolation of mobile element gain/loss,assemblages,magnetic intensity,structural complexity,host rock physical properties.These methods were applied to compiled open-source and new field observations from Archean greenstone terranes in the Abitibi and western Wabigoon sub-provinces of the Superior Province near Timmins and Dryden,Ontario,respectively.Resulting feature maps represent conceptually significant components in magmatic,volcanogenic,and orogenic mineral systems.A comparison of ranked feature importance from random forests to conceptual mineral system models show that the feature maps adequately represent system components,with a few exceptions attributed to biased training data or limited constraint data.The study also highlights the shared importance of several highly ranked features for the three mineral systems,indicating that spatially related mineral systems exploit the same features when available.Comparing feature importance when classifying orogenic Au mineralization in Timmins and Dryden provides insights into the possible cause of contrasting endowment being related to fluid source.The study demonstrates that integrative studies leveraging multidisciplinary data and methodology have the potential to advance geological understanding,maximize data utility,and generate robust exploration targets.
基金supported by the National Key R&D Program of China(Grant No.2018YFC0604006)the National Natural Science Foundation of China(Grant No.41572077)the Geological Survey Project of China(Grant No.1212011140056)。
文摘In this paper, we present textures, trace element compositions, and sulfur isotope data for pyrite from the Honghai volcanogenic massive sulfide deposit to place new constraints on the source and evolution of the ore-forming fluids and provide insights into the ore genesis with implications for future exploration. The Honghai deposit consists of upper lenticular ores comprising massive sulfides that are underlain by stockwork and disseminated sulfides. The textural and isotopic characteristics of the synsedimentary framboidal pyrite(Syn-Py) indicate its formation by biogenetic processes. Coarse-grained pyrite generations(M-Py1, M-Py2, and M-Py3) from the massive sulfides have high Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations and low Co, Se, Te, Ti, and Sn concentrations, indicating that they precipitated from metal-rich, low-to intermediate-temperature,oxidizing fluids. The high Te, Ti, and Sn concentrations and high Co/Ni ratios in the massive pyrite(M-Py4) associated with magnetite in the massive sulfide lenses, as well as the high Ti, V, Cr, and Ni concentrations and low Al, Mn, and Zn concentrations in the magnetite, suggest that the coexisting M-Py4 and magnetite precipitated under oxidizing and hightemperature(300℃ to 500℃) conditions. In contrast, pyrite grains from the underlying stockwork and veins(V-Py1, V-Py2, and V-Py3) are characterized by low Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations coupled with high Co, Se, Te, and Ti concentrations and high Co/Ni ratios, which are interpreted in terms of reducing and high-temperature ore-forming fluids. The large variations in δ^(34)S values from-6.4‰ to +29.9‰ suggest that the ore-forming fluids were derived from magmatic source that were significantly modified by seawater. The spatial variations of trace element assemblages of pyrite from different levels of the main massive orebodies can be used as an indicator for mineral exploration of Cu-Zn ores in the Honghai deposit.Although no significant difference in δ34S values is observed between the upper massive sulfide lenses and lower stockwork/vein zone, the spiky δ34S pattern noted in the massive pyrite can be used as a marker for the main massive orebodies.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
基金funded by"State Key Laboratory of Geological Processes and Mineral Resources(GPMR200624),China University of Geosciences"
文摘In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogenic Belt (CAOB). The CAOB is a complex collage of ancient microcontinents, island arcs, oceanic plateaux and oceanic plates, which were amalgamated and accreted in Early Palaeozoic to Early Permian times. The establishment of the CAOB collage was followed by strike-slip movements and affected by intraplate magmatism, linked to mantle plume activity, best exemplified by the 250 Ma Siberian Traps and the 280 Ma Tarim event. In northern Xinjiang, there ale numerous and economically important mineral systems. In this contribution we describe a selection of representative mineral deposits, including subduction-related porphyry and epithermal deposits, volcanogenic massive sulphides and skarn systems. Shear zone-hosted Au lodes may have first formed as intrusion-related and subsequently re-worked during strike-slip deformation. Intraplate magmatism led to the emplacement of concentrically zoned (Alaskan-style) mafic-ultramafic intrusions, many of which host orthomagmatic sulphide deposits. A huge belt of pegmatites in the Altay orogen, locally hosts world-class rare metal deposits. Roll-front,
基金the Innovative Project of the Chinese Academy of Sciences(Grant No.KZC3-Sw-137) 305 Project ofthe State Science and technology Program of China(GrantNo.2001BA609A-07-08).
文摘The 40Ar-39Ar age method is employed in this work to analyze fluid inclusions of quartz in the ore bodies from the Kuo'erzhenkuola and Bu'erkesidai gold deposits in the Sawur gold belt, northern Xinjiang. The results show that the main mineralization occurred in 332.05±2.02-332.59±0.51 Ma and 335.53±0.32 Ma-336.78±0.50 Ma for the Kuo'erzhenkuola and Bu'erkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic time of the two deposits are close to those of the hosting rocks formed by volcanic activity of the Sawur gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits, and identifies that in the Hercynian period, the Altay area developed a tectonic-magmatic-hydrothermal mineralization of the Early Carboniferous period, except the two known mineralization periods including the tectonic-magmatic-hydrothermal mineralization of the Devonian period and Late Carboniferous- Permian period.
文摘Water-rich clay to sand suspensions show a shear rate dependent flow behavior and knowledge of the appropriate rheological model is relevant for sedimentological, industrial and hydraulic studies. We present experimental rheological measurements of water-rich(40 to 60 wt%) clay to silt(population A) and silt to sand(population B) suspensions mixed in different proportions. The data evidence a shear rate dependent shear thinning-shear thickening transition. At lower shear rates, the suspensions organize in chains of particles, whereas at higher shear rates, these chains disrupt so increasing the viscosity. The viscosity, consistency and yield stress decrease as the A+B fraction decreases as the content of B particles increases. This behavior reflects the competing effects of the lubrication and frictional processes as a function of particle size and water content. Transitional flows form by the incorporation of small amounts of the finer fraction while ‘oceanic floods’ form at the estuary of rivers and the submarine debris-flows increase their velocity by incorporating water. The critical Reynolds number of the studied suspensions is ~2000±100 suggesting that the grainsize plays a major role in the laminar to turbulent transition. Our results have implications for the modeling of sediment flows and the hazard related to floods.
基金The study is supported by Agence of International Science and Technology, Japan
文摘The Gacun Kuroko-type deposit, Southwestern China, is hosted in rhyolitic rocks associated with the underlying mafic rocks occurred in the - 1000 m deep fault - bounded basin within the intra -arc rifting zone which formed on the Triassic Yidun island - arc. Two vertically separated alteration systems are recognized: one is conformable or semiconformable alteration zone developed in - 150 m thick mafic unit 1-1.5 km below the massive sulfide ore body; the other is discordant alteration pipe directly surrounded around stockwork ore within rhyolitic unit. The lower conformable alteration zone extending for several kilometers along strike is characterized by silicification and epidotization which result in the development of quartz vein and quartz-epidote vein systems in mafic lava flows and replacement of primary minerals and groundmass in spilitized mafic volcanics and dikes by quartz, epidote - group minerals and sodic plagioclase. Sulfides often occur in the vein system and altered mafic volcanics. Quartz solubility relation indicates that silicification is a consequence of interaction of Si- saturated fluids with mafic rocks in a higher temperature system (T>340℃), intensifying by intrusion of mafic dike or high-level acidic magma chamber. The alteration pipe of diameter about 2 km shows a similar mineralogical zoning to Kuroko deposits of Japan. The sequence is quartz + hyalophane; sericite + chlorite + quartz and zeolite-like zones from core to margins of the pipe. The chlorite core only occurs in the root part of the alteration pipe and downwards transfers into epidote - chlorite and epidote - quartz vein swarm extending 500 m downwards. The felsic rocks away from the orebody and alteration pipe took place district-scale alteration, which has typical low-temperature mineral association: illite + albite + quartz + calcite. Whole -rock and quartz δ18O values indicate that district - scale alteration is a result of interaction of seawater with rocks at lower temperature (T<200℃)under water-dominated condition. However, the altered rocks from the pipe show remarkably δ18O enrichment, and bulk -rock δ18O values decreased gradually toward stockwork orebody from 15.1‰-l5. 75‰ in zeolite-like zone and 12. 05‰-14. 2‰ in sericite - quartz zone to 11.3 ‰ - 14. 4‰ in quartz - hyalophane zone. The filled temperatures of fluid inclusions in quartz and sphalerite lie in the ranges of 280 -320 ℃ for quartz - hyalophane zone and 250 ℃ to 297 ℃ for sericite-quartz zone. The estimated δ18O values of hydrothermal fluids are 7. 98‰ and3.2‰, respectively, based on quartz δ18O data in the deposit. The lower conformable alteration is considered to be approximately coeval with the alteration pipe, based on the SiO2 concentration in the fluids, which restrict the main fluid - rock reaction zone to be located in mafic horizon by quartz barometer, and metal element flux calculation and sulfide - epidote vein system developed both in alteration systems. High - salinity fluid inclusions in gangue quartz (>8% eq. NaCl) from stockwork ore and in quartz phenocryst (>40% eq. NaCl) in footwall rhyolite strongly suggest the existence of hot-saline brine to react with mafic complex and leach metal components, which probably originates mainly from magmatic fluid derived from high-level acidic magma chamber. The brine layer located in mafic unit possibly heats and drives the overlying single -pass convective seawater reacting with felsic rocks. The 'density window' may be expected to occur on the interface between seawater and brine layer, when the brine becomes to be gravitationally instability by the turbulent entrainment of seawater during magmatic and/or tectonic activities. The sulfide mineralization and alteration pipe is inter preted as an effect of the 'density window' through which the mixed fluids of brine with seawater adiabatically discharges upwards.
文摘This paper presents the results of systematic, ecopathological, and chorological studies of the diversity of the subnival belt (zone) flora of the Caucasus Mountains, peculiarity of altitudinal distribution, endemism and florogenesis. Comparative analysis of the diversity of the subnival flora on different types of stone and at different altitudes in various parts of the Caucasus has been made. It is based on field investigation and on literature research. 226 species, 96 genera and 35 families were recorded in the subnival belt of the Caucasus within a range of 2,800 (2,900)-4,000 m a.s.l. Among these 117 species or 51% are common endemics of the Greater Caucasus and Caucasus. It is proved that floristic elements of different origin (authochronic and aloctonic) and age (Miocene-Pliocene and Pleistocene) contributed to the florogenesis of the subnival belt of the Caucasus. The Caucasian, the Eu-Caucasian, the Eastern Asian, the Minor Asian, the Dagestan-lranian, the Caucasia-European groups plaied an important role in the florogenesis. Criophilic evolution on the of the some plants was related to oreophytizacion during formation of the Caucasus mountains (in the second half of the Tertiary), as well as the glaciations scale. Species composition and coenotic role are different in various parts of the Caucasus and within each part. This is conditioned by the different hypsometry of various parts of the Caucasus, the character of glatiations, edaphic and climatic conditions, lythological diversity. Compared with the Greater Caucasus, the relative floristic poverty of the Lesser Caucasus is due to low elevations and extensive rather recent vulcanism.
基金Financial support was provided by 305 Project of the State Science and technology Program of China(Grant Nos.2001BA609A-07-08 and 2003BA612A-19).
文摘The Kuoerzhenkuola gold field (including the Kuoerzhenkuola and the Buerkesidai gold deposits) is the most important one in the Sawuer gold belt, northern Xinjiang, China. Iso-topic studies including D, O, He, C, S, Pb and Sr reveal that the ore-forming fluids of the Kuo-erzhenkuola and the Buerkesidai deposits shared the same source: the water of ore fluids was magmatic water and minor meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two depos-its are a mixture of mantle-derived fluids incorporated by crust-derived fluid, and meteoric water. Based on these results, combined with the consideration of the tectonic setting and geological features, we suggest that the two gold deposits in the Kuoerzhenkuola gold field, Sawur gold belt share the same genesis, and are volcanogenic hydrothermal gold deposits occurring in the same caldera.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.92062212)the Key Deployment Project of Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.IGGCAS-201902)。
文摘Beryllium(Be)is one of the unsubstitutable key metals in strategic emerging industries and national defense industries,mainly originating from volcanogenic Be deposits.Thus,volcanogenic Be deposits have become important research objects of key metal deposits,with a focus on their occurrence,metallogenic mechanism,and resource distribution.In the southeast coast of China,the Late Mesozoic volcanic intrusive complex has a good Be metallogenic background,and strong Be mineralization occurs in some areas.Field geological investigation and analyses of samples from Southeast Zhejiang as well as Northeast and Southeast Fujian indicate that Be mineralization in the southeast coast of China is closely related to the hydrothermal processes in the volcanic intrusive complex.In Southeast Zhejiang,Be ore in the Qingtian area mainly occurs in granite porphyry,with the Be content reaching 939 ppm,while strong Be mineralization from Zhangji rhyolite porphyry in the Pingyang area contains up to 11400 ppm Be.In Xiapu County,Northeastern Fujian,the Dawan Be deposit is characterized by constituents of helvite and beryl.In Pinghe County,Southeastern Fujian,the Fulishi Be ore is a quartz vein beryl-type ore.These results suggest that the volcanic intrusive complex area in the southeast coast of China has a wide range of Be mineralization and better Be metallogenic potential,and it is expected to become an important Be metallogenic belt in China.Thus,we should thoroughly investigate the Be resources of granite porphyry,rhyolite porphyry,quartz porphyry,and quartz vein in this volcanic rock area,which can provide a theoretical basis for the exploration and guiding prospecting of volcanic intrusive complex Be deposits.