Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt format...Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt formations,insoluble impurities and interlayers detach during salt dissolution and accumulate as sediment at the cavern base,thereby reducing the storage capacity and economic viability of salt cavern gas storage(SCGS).This study investigates sediment formation mechanisms,void distribution,and voidage in the Huai'an low-grade salt mine,introducing a novel self-developed physical simulation device for two butted-well horizontal(TWH)caverns that replicates compressed air injection and brine discharge.Experiments comparing“one injection and one discharge”and“two injections and one discharge”modes revealed that(1)compressed air effectively displaces brine from sediment voids,(2)a 0.5 MPa injection pressure corresponds to a 10.3 MPa operational lower limit in practice,aligning with field data,and(3)sediment voidage is approximately 46%,validated via air-brine interface theory.The“two injections and one discharge”mode outperformed in both discharge volume and rate.Additionally,a mathematical model for brine displacement via compressed air was established.These results provide foundational insights for optimizing compressed air energy storage(CAES)in low-grade salt mines,advancing their role in renewable energy integration.展开更多
Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applicat...Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applications such as trapped field magnets.However,for such large-grain superconductor bulks,there are lots of voids and cracks forming during the process of melting preparation,and some of them can be up to hundreds of microns or even millimeters in size.Consequently,these larger size voids/cracks pose a great threat to the strength of the bulks due to the inherent brittleness of superconductor REBCO materials.In order to ensure the operational safety of related superconducting devices with bulk superconductors,it is firstly important to accurately detect these voids/cracks in them.In this paper,we proposed a method for quantitatively evaluating multiple voids/cracks in bulk superconductors through the magnetic field and displacement response signals at superconductor bulk surface.The proposed method utilizes a damage index constructed from the magnetic field signals and displacement responses to identify the number and preliminary location of multiple defects.By dividing the detection area into subdomains and combining the magnetic field signals with displacement responses within each subdomain,a particle swarm algorithm was employed to evaluate the location and size parameters of the defects.In contrast to other evaluation methods using only magnetic field or displacement response signals,the combined evaluation method using both signals can identify the number of cracks effectively.Numerical studies demonstrate that the morphology of voids and cracks reconstructed using the proposed algorithm ideally matches real defects and is applicable to cases where voids and cracks coexist.This study provides a theoretical basis for the quantitative detection of voids/cracks in bulk superconductors.展开更多
Nickel-based alloys are the primary structural materials in steam generators of high-temperature gas reactors.To understand the irradiation effect of nickel-based alloys,it is necessary to examine dislocation movement...Nickel-based alloys are the primary structural materials in steam generators of high-temperature gas reactors.To understand the irradiation effect of nickel-based alloys,it is necessary to examine dislocation movement and its interaction with irradiation defects at the microscale.Hardening due to voids and Ni_(3)Al precipitates may significantly impact irradiation damage in nickel-based alloys.This paper employs the molecular dynamics method to analyze the interaction between edge dislocations and irradiation defects(void and Ni_(3)Al precipitates)in face-centered cubic nickel.The effects of temperature and defect size on the interaction are also explored.The results show that the interaction process of the edge dislocation and irradiation defects can be divided into four stages:dislocation free slip,dislocation attracted,dislocation pinned,and dislocation unpinned.Interaction modes include the formation of stair-rod dislocations and the climbing of extended dislocation bundles for voids,as well as the generation of stair-rod dislocation and dislocation shear for precipitates.Besides,the interactions of edge dislocations with voids and Ni_(3)Al precipitates are strongly influenced by temperature and defect size.展开更多
Ccanposites are common material constructions for high-tech use now. Mechanical properties of woven reinforced composites are influenced by voids inside the structure. Voids could be classified to the two sections. Lo...Ccanposites are common material constructions for high-tech use now. Mechanical properties of woven reinforced composites are influenced by voids inside the structure. Voids could be classified to the two sections. Long and thin cracks are more dangerous than pores. It is important to find relations between preparation and place of occurrence of voids. This paper classifies defects according to rise mechanism, point of occurrence, orientation, size and affect to the properties. Image analysis was used for observing samples. Future work would be oriented not only to observing real samples, bet also to calculate mechanical properties frwn real and ideal structures in 3D woven reinforced composites.展开更多
High-entropy alloys(HEAs)exhibit the excellent elevated-temperature performance and irradiation resistance due to the important core effect of serious lattice distortion for impeding dislocation motion,as candidate ma...High-entropy alloys(HEAs)exhibit the excellent elevated-temperature performance and irradiation resistance due to the important core effect of serious lattice distortion for impeding dislocation motion,as candidate materials for nuclear applications.Despite the growth of the nuclear power sector,the effects of high-temperature and high-dose irradiation-induced voids on the mechanical properties of HEA in higher power nuclear reactors remain insufficiently researched,hindering its industrial application.In this study,we establish a consistent parameterization crystal plastic constitutive model for the hardening and creep behaviors of HEA,incorporating the spatial distribution of void size and shape effects,in contrast to traditional creep models that rely on temperature-related fitting parameters of the phenomenological power law equation.The model matches well with experimental data at different temperatures and irradiation doses,demonstrating its robustness.The effects of irradiation dose,temperature,and degree of lattice distortion on irradiation hardening and creep behavior of void-containing HEA are investigated.The results indicate that HEA with high lattice distortion exhibits better creep resistance under higher stress loads.The yield stress of irradiated HEA increases with increasing irradiation dose and temperature.The creep resistance increases with increasing irradiation dose and decreases with increasing irradiation temperature.The increase in irradiation dose causes a specific morphological transformation from spherical to cubic voids.The modeling and results could provide an effective theoretical way for tuning the yield strength and alloy design in advanced HEAs to meet irradiation properties.展开更多
The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remain...The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remains an open issue,and the influence of microstructure is not yet fully understood.To address these challenges,we propose a THM model for FT in PMs that considers microstructure and variable air content.In this work,a non-equilibrium thermodynamic approach is proposed to capture ice formation/melting,the microstructure is accounted for utilizing micromechanics,and the FT processes in air-entrained PMs are formulated within the proposed THM model.This model incorporates variable air void characteristics,e.g.air content,spacing factor,specific surface area,and supercooled water-filled regimes,and distinguishes the roles of air voids between freezing and thawing.The FT behaviors,including deformation,ice formation/melting,spacing factor,and pore water pressure evolutions,are focused.Comparisons with experimental results,confirm the capability of the present model.The results demonstrate the effects of variable air voids on the FT behavior of air-entrained PMs.The findings reveal that assuming fixed air void characteristics can lead to underestimation of pore pressure and deformation,particularly at low air content.Additionally,air voids act as cryo-pumps during freezing and when the cooling temperature stabilizes.During thawing,air voids supply gas to the melting sites(i.e.“gas escape”),preventing further significant deformation reduction.These results can provide novel insights for understanding the frost damage of PMs.展开更多
A ground girder is laid on the preprocessed subgrade by gravity compaction and integrally uniformly supported by subgrade in maglev transit.The settlement of the maglev subgrade inevitably affects the vibration state ...A ground girder is laid on the preprocessed subgrade by gravity compaction and integrally uniformly supported by subgrade in maglev transit.The settlement of the maglev subgrade inevitably affects the vibration state of the medium and low speed maglev coupled system by the additional deformation of the maglev track.This study investigated the dynamic properties of the coupled vibration system affected by the subgrade settlement.First,a theoretical coupled vibration model of a maglev train-track-ground girder system with uneven subgrade settlement was proposed and verified.Then,the effect mechanism of the coupled system caused by the uneven subgrade settlement was explored.Finally,settlement types and subgrade support voiding were examined.The analysis showed that the uneven subgrade settlement considerably increased the dynamic responses of the levitation control system and maglev vehicle while having a minor influence on those of the track-ground girder.The influence of a single ground girder settling was the strongest,and adjacent sides’settling of two ground girders was the weakest for the vibration of a maglev train.An extremely large uneven settlement exceeding 6 mm led to active levitation control system instability.The subgrade support voiding enlarged the vehicle-induced vibration of the track ground girder.展开更多
Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulatin...Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulating material to ensure good reliability.Flow-front merging usually occurs during the molding process,and air is then trapped under the chip,which can form voids in the molded product.The void under the chip may cause stability and reliability problems.However,the flow process is unobservable during the transfer molding process.The engineer can only check for voids in the molded product after the process is complete.Previous studies have used fluid visualization experiments and developed computational fluid dynamics simulation tools to investigate this issue.However,a critical gap remains in establishing a comprehensive three-dimensional model that integrates two-phase flow,accurate venting settings,and fluid surface tension for molded underfill void evaluation—validated by experimental fluid visualization.This study aims to address this gap in the existing literature.In this study,a fluid visualization experiment was designed to simulate the transfer molding process,allowing for the observation of flow-front merging and void formation behaviors.For comparison,a three-dimensional mold flow analysis was also performed.It was found that the numerical simulation of the trapped air compression process under the chip was more accurate when considering the capillary force.The effect of design factors is evaluated in this paper.The results show that the most important factors for void size are fluid viscosity,the gap height under the chip,transfer time,contact angle between the fluid and the contact surfaces,and transfer pressure.Specifically,a smaller gap height beneath the chip aggravates void formation,while lower viscosity,extended transfer time,reduced contact angle,and increased transfer pressure are effective in minimizing void size.The overall results of this study will be useful for product and process design in selecting appropriate solutions for IC packaging,particularly in the development of void-free molded-underfill flip-chip packages.These findings support the optimization of industrial packaging processes in semiconductor manufacturing by guiding material selection and process parameters,ultimately enhancing package reliability and yield.展开更多
Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were condu...Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results.展开更多
This work investigates the dynamic response of a monocrystalline nickel-titanium(NiTi)alloy at the atomic scale.The results deduced from non-equilibrium molecular dynamics modeling demonstrate that no shear deformatio...This work investigates the dynamic response of a monocrystalline nickel-titanium(NiTi)alloy at the atomic scale.The results deduced from non-equilibrium molecular dynamics modeling demonstrate that no shear deformation band(SDB)appears in the sample at an impact velocity of less than 0.75 km/s.As this velocity increases,shear deformations become pronouncedly localized,and the average spacing between SDBs decreases until it stabilizes.Combining shear stress and particle velocity profiles,the survival of SDBs is found to be closely associated with plastic deformation.The dislocations clustering around SDBs predominantly exhibit 100 partial dislocations,whereas 1/2111 full dislocations are dominant in those regions without SDBs.Void nucleation always occurs on SDBs.Subsequently,void growth promotes a change in the SDB distribution characteristic.For the case without SDB,voids are randomly nucleated,and the void growth exhibits a non-uniform manner.Thus,there is an interaction between shear localization and void evolution in the NiTi alloy subjected to intensive loading.This study is expected to provide in-depth insights into the microscopic mechanism of NiTi dynamic damage.展开更多
It has been well recognized that sand particles significantly affect the mechanical properties of reconstituted sandy clays,including the hosted clay and sand particles.However,interrelation between the permeability a...It has been well recognized that sand particles significantly affect the mechanical properties of reconstituted sandy clays,including the hosted clay and sand particles.However,interrelation between the permeability and compressibility of reconstituted sandy clays by considering the structural effects of sand particles is still rarely reported.For this,a series of consolidation-permeability coefficient tests were conducted on reconstituted sandy clays with different sand fractions(ψ_(ss)),initial void ratio of hosted clays(e_(c0))and void ratio at liquid limit of hosted clays(e_(cL)).The roles of ψ_(ss) in both the relationships of permeability coefficient of hosted clay(k_(v-hosted clay))versus effective vertical stress(σ'_(v))and void ratio of hosted clay(e_(c-hosted clay))versus σ'_(v) were analyzed.The results show that the permeability coefficient of reconstituted sandy clays(k_(v))is dominated by hosted clay(k_(v)=k_(v-hosted clay)).Both ψ_(ss) and σ'_(v) affect the k_(v) of sandy clays by changing the e_(c-hosted clay) at any given σ'_(v).Due to the partial contacts and densified clay bridges between the sand particles(i.e.structure effects),the e_(c-hosted clay) in sandy clays is higher than that in clays at the same σ'_(v)v.The k_(v)-e_(c-hosted clay) relationship of sandy clays is independent of σ'_(v) and ψ_(ss)but is a function of e_(cL).The types of hosted clays affect the k_(v) of sandy clays by changing the e_(cL).Based on the relationship between permeability coefficient and void ratio for the reconstituted clays,an empirical method for determining the k_(v) is proposed and validated for sandy clays.The predicted values are almost consistent with the measured values with k_(v-predicted)=k_(v-measured)=0.6-2.5.展开更多
Dear Editor,Primary bladder neck obstruction(PBNO)affects approximately 28%–54%of men[1].Its etiology remains unclear.Symptoms of PBNO present as voiding(e.g.,decreased force of stream,hesitancy,intermittent stream,a...Dear Editor,Primary bladder neck obstruction(PBNO)affects approximately 28%–54%of men[1].Its etiology remains unclear.Symptoms of PBNO present as voiding(e.g.,decreased force of stream,hesitancy,intermittent stream,and incomplete emptying),storage(e.g.,frequency,urgency,urge incontinence,and nocturia),or a combination of both[2].Untreated PBNO can lead to bladder dysfunction,bladder diverticula,hydronephrosis,and impaired renal function[3].展开更多
Often in abandoned mine sites are present both underground voids produced by mining and the tailings of treatment plant.An interesting solution for the rehabilitation of the sites would be to place the tailings of the...Often in abandoned mine sites are present both underground voids produced by mining and the tailings of treatment plant.An interesting solution for the rehabilitation of the sites would be to place the tailings of the process in the underground mining voids,thus obtaining the reclamation of surface areas and the stabilization of abandoned voids to prevent the dangerous phenomena of subsidence.However,these operations require inert waste,which must not be source of pollution,and the choice of a water/solid optimum to ensure good conditions of pumpability.展开更多
According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this p...According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this paper, an important integral relation is given, which can be considered essentially as the generalized pr- inciple of virtual work. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem of work in theory of elastic materials with voids, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field and two-field generalized variational principles, and the principle of minimum potential and complementary energies. Furthermore, with this appro ach, the intrinsic relationship among various principles can be explained clearly.展开更多
This paper aims at investigating the effect of voids on the tensile properties of [(±45)4/(0,90)/(±45)2] S and [(±45)/0 4/(±45)(0,90)] S composites.Specimens with void contents in the r...This paper aims at investigating the effect of voids on the tensile properties of [(±45)4/(0,90)/(±45)2] S and [(±45)/0 4/(±45)(0,90)] S composites.Specimens with void contents in the range of 0.4% to 9.0% were fabricated from carbon/epoxy fabric.The void content was determined by ultrasonic attenuation and optical image analysis,and microscopic inspection was also used to analyze the shape and size of the voids.The influence of voids on the tensile strength and modulus of both stacking sequence is compared in terms of the size and the shape of the voids.The effect of voids on the initiation and propagation of tensile failure of both stacking sequence composite was investigated.展开更多
The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-la...The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.展开更多
A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed t...A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed to obtain high-resolution designs with a relatively low computational cost.Ersatz material model based on Greville abscissae collocation scheme is utilised to represent both the Young’s modulus of the material and the density field.Two benchmark examples are tested to illustrate the effectiveness of the proposed method.Numerical results show that high-resolution designs can be obtained with relatively low computational cost,and the optimisation can be significantly improved without introducing additional DOFs.展开更多
Four cellulose ethers(CEs) were compared for their effects on the pore structure of cement paste using mercury intrusion porosimetry. The experimental results show that the total pore volume and porosity of cement p...Four cellulose ethers(CEs) were compared for their effects on the pore structure of cement paste using mercury intrusion porosimetry. The experimental results show that the total pore volume and porosity of cement pastes containing the four cellulose ethers are significantly higher than that of the pure cement pastes and the total pore volume and porosity of cement pastes containing HEC(hydroxyethyl cellulose ether) or low viscosity cellulose ethers are low in four CEs. By changing the surface tension and viscosity of liquid phase and the strengthening of liquid film between air voids in cement pastes, CEs affect the formation, diameter evolution and upward movement of air voids and the pore structure of hardening cement paste. For the four CEs, the pore volume of cement pastes containing HEC or low viscosity cellulose ethers is higher with the diameter of 30-70 nm while lower with the diameter larger than 70 nm. CEs affect the pore structure of cement paste mainly through their effects on the evolvement of the small air voids into bigger ones when the pore diameter is below 70 nm and their effects on the entrainment and stabilization of air voids when the pore diameter is above 70 nm.展开更多
The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially ...The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially at the interface,and the averagesize of the voids increases with both the time and strain rate.There is an obvious coalescence of the voids at a large strain rate whenthe deformation is applied along the interface under both constant and cyclic strain rate conditions.For the cyclic strain rate appliedalong the interface,the growth exponent of Kirkendall voids increases with increasing the strain rate when the strain rate is largerthan1.0×10-6,while it increases initially and then decreases when the strain rate is smaller than9.0×10?7.The growth exponent ofKirkendall voids increases initially and then decreases gradually with increasing the length of cyclic period under a square-waveform constant strain rate.展开更多
The deterioration of the sleeper support on the ballasted track begins with the accumulation of sleeper voids.The increased dynamic loading in the voided zone and the ballast contact conditions cause the accelerated g...The deterioration of the sleeper support on the ballasted track begins with the accumulation of sleeper voids.The increased dynamic loading in the voided zone and the ballast contact conditions cause the accelerated growth of the settlements in the voided zones,which results in the appearance of local instabilities like ballast breakdown,white spots,subgrade defects,etc.The recent detection and quantification of the sleeper voids with track-side and onboard monitoring can help to avoid or delay the development of local instabilities.The present paper is devoted to the study of the dynamic behavior of railway track with sleeper voids in the ballast breakdown zone.The result of the experimental track-side measurements of rail acceleration and deflection is presented.The analysis shows the existence of the dynamic impact during wheel entry in the voided zone.However,the measured dynamic impact is subjected to the bias of the track-side measurement method.Both the mechanism of the impact and the measurement aspects are explained by using the one-beam model on viscoelastic foundation.The void features in the dynamic behavior are analyzed for the purpose of track-side and onboard monitoring.A practical method of the void parameter quantification is proposed.展开更多
基金financial support from the National Key Research and Development Program of China(No.2024YFB4007100)the Basic ForwardLooking Project of the Sinopec Science and Technology Department,“Research on the Long-Term Sealing Mechanism of Multi-layer Salt Cavern Hydrogen Storage”(No.P24197-4)。
文摘Renewable energy storage technologies are critical for transitioning to sustainable energy systems,with salt caverns playing a significant role in large-scale solutions.In water-soluble mining of low-grade salt formations,insoluble impurities and interlayers detach during salt dissolution and accumulate as sediment at the cavern base,thereby reducing the storage capacity and economic viability of salt cavern gas storage(SCGS).This study investigates sediment formation mechanisms,void distribution,and voidage in the Huai'an low-grade salt mine,introducing a novel self-developed physical simulation device for two butted-well horizontal(TWH)caverns that replicates compressed air injection and brine discharge.Experiments comparing“one injection and one discharge”and“two injections and one discharge”modes revealed that(1)compressed air effectively displaces brine from sediment voids,(2)a 0.5 MPa injection pressure corresponds to a 10.3 MPa operational lower limit in practice,aligning with field data,and(3)sediment voidage is approximately 46%,validated via air-brine interface theory.The“two injections and one discharge”mode outperformed in both discharge volume and rate.Additionally,a mathematical model for brine displacement via compressed air was established.These results provide foundational insights for optimizing compressed air energy storage(CAES)in low-grade salt mines,advancing their role in renewable energy integration.
基金supported by the National Natural Science Foundation of China(Grant Nos.12232005 and 12072101).
文摘Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applications such as trapped field magnets.However,for such large-grain superconductor bulks,there are lots of voids and cracks forming during the process of melting preparation,and some of them can be up to hundreds of microns or even millimeters in size.Consequently,these larger size voids/cracks pose a great threat to the strength of the bulks due to the inherent brittleness of superconductor REBCO materials.In order to ensure the operational safety of related superconducting devices with bulk superconductors,it is firstly important to accurately detect these voids/cracks in them.In this paper,we proposed a method for quantitatively evaluating multiple voids/cracks in bulk superconductors through the magnetic field and displacement response signals at superconductor bulk surface.The proposed method utilizes a damage index constructed from the magnetic field signals and displacement responses to identify the number and preliminary location of multiple defects.By dividing the detection area into subdomains and combining the magnetic field signals with displacement responses within each subdomain,a particle swarm algorithm was employed to evaluate the location and size parameters of the defects.In contrast to other evaluation methods using only magnetic field or displacement response signals,the combined evaluation method using both signals can identify the number of cracks effectively.Numerical studies demonstrate that the morphology of voids and cracks reconstructed using the proposed algorithm ideally matches real defects and is applicable to cases where voids and cracks coexist.This study provides a theoretical basis for the quantitative detection of voids/cracks in bulk superconductors.
基金supported by the Ministry of Industry and Information Technology of China(grant number TC220A04W-7,203)CNNC Youth Elite Scientific Research Project,the National Key R&D Plan of China(grant number 2020YFB1901600)the National Science Technology Major Project of China(grant numbers 2017ZX06902012 and 2017ZX06901024).
文摘Nickel-based alloys are the primary structural materials in steam generators of high-temperature gas reactors.To understand the irradiation effect of nickel-based alloys,it is necessary to examine dislocation movement and its interaction with irradiation defects at the microscale.Hardening due to voids and Ni_(3)Al precipitates may significantly impact irradiation damage in nickel-based alloys.This paper employs the molecular dynamics method to analyze the interaction between edge dislocations and irradiation defects(void and Ni_(3)Al precipitates)in face-centered cubic nickel.The effects of temperature and defect size on the interaction are also explored.The results show that the interaction process of the edge dislocation and irradiation defects can be divided into four stages:dislocation free slip,dislocation attracted,dislocation pinned,and dislocation unpinned.Interaction modes include the formation of stair-rod dislocations and the climbing of extended dislocation bundles for voids,as well as the generation of stair-rod dislocation and dislocation shear for precipitates.Besides,the interactions of edge dislocations with voids and Ni_(3)Al precipitates are strongly influenced by temperature and defect size.
基金Supported by the Czech Scientific Foundation (No.106/03/ H150)
文摘Ccanposites are common material constructions for high-tech use now. Mechanical properties of woven reinforced composites are influenced by voids inside the structure. Voids could be classified to the two sections. Long and thin cracks are more dangerous than pores. It is important to find relations between preparation and place of occurrence of voids. This paper classifies defects according to rise mechanism, point of occurrence, orientation, size and affect to the properties. Image analysis was used for observing samples. Future work would be oriented not only to observing real samples, bet also to calculate mechanical properties frwn real and ideal structures in 3D woven reinforced composites.
基金support from the National Natural Science Foundation of China(Nos.12302083,U2267252,12372069,and 12172123)the China Postdoctoral Science Foundation(Nos.2023M731061 and BX20230109)+1 种基金the Natural Science Foundation of Hunan Province(No.2022JJ20001)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20230420).
文摘High-entropy alloys(HEAs)exhibit the excellent elevated-temperature performance and irradiation resistance due to the important core effect of serious lattice distortion for impeding dislocation motion,as candidate materials for nuclear applications.Despite the growth of the nuclear power sector,the effects of high-temperature and high-dose irradiation-induced voids on the mechanical properties of HEA in higher power nuclear reactors remain insufficiently researched,hindering its industrial application.In this study,we establish a consistent parameterization crystal plastic constitutive model for the hardening and creep behaviors of HEA,incorporating the spatial distribution of void size and shape effects,in contrast to traditional creep models that rely on temperature-related fitting parameters of the phenomenological power law equation.The model matches well with experimental data at different temperatures and irradiation doses,demonstrating its robustness.The effects of irradiation dose,temperature,and degree of lattice distortion on irradiation hardening and creep behavior of void-containing HEA are investigated.The results indicate that HEA with high lattice distortion exhibits better creep resistance under higher stress loads.The yield stress of irradiated HEA increases with increasing irradiation dose and temperature.The creep resistance increases with increasing irradiation dose and decreases with increasing irradiation temperature.The increase in irradiation dose causes a specific morphological transformation from spherical to cubic voids.The modeling and results could provide an effective theoretical way for tuning the yield strength and alloy design in advanced HEAs to meet irradiation properties.
基金the funding support from the National Natural Science Foundation of China(Grant Nos.52350004 and 51925903).
文摘The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remains an open issue,and the influence of microstructure is not yet fully understood.To address these challenges,we propose a THM model for FT in PMs that considers microstructure and variable air content.In this work,a non-equilibrium thermodynamic approach is proposed to capture ice formation/melting,the microstructure is accounted for utilizing micromechanics,and the FT processes in air-entrained PMs are formulated within the proposed THM model.This model incorporates variable air void characteristics,e.g.air content,spacing factor,specific surface area,and supercooled water-filled regimes,and distinguishes the roles of air voids between freezing and thawing.The FT behaviors,including deformation,ice formation/melting,spacing factor,and pore water pressure evolutions,are focused.Comparisons with experimental results,confirm the capability of the present model.The results demonstrate the effects of variable air voids on the FT behavior of air-entrained PMs.The findings reveal that assuming fixed air void characteristics can lead to underestimation of pore pressure and deformation,particularly at low air content.Additionally,air voids act as cryo-pumps during freezing and when the cooling temperature stabilizes.During thawing,air voids supply gas to the melting sites(i.e.“gas escape”),preventing further significant deformation reduction.These results can provide novel insights for understanding the frost damage of PMs.
基金National Natural Science Foundation of China under Grant Nos.52478467and 52108417Guangdong Basic and Applied Basic Research Foundation under Grant No.2024A1515012569the Natural Science Basic Research Program of Shaanxi under Grant No.2021JQ-101。
文摘A ground girder is laid on the preprocessed subgrade by gravity compaction and integrally uniformly supported by subgrade in maglev transit.The settlement of the maglev subgrade inevitably affects the vibration state of the medium and low speed maglev coupled system by the additional deformation of the maglev track.This study investigated the dynamic properties of the coupled vibration system affected by the subgrade settlement.First,a theoretical coupled vibration model of a maglev train-track-ground girder system with uneven subgrade settlement was proposed and verified.Then,the effect mechanism of the coupled system caused by the uneven subgrade settlement was explored.Finally,settlement types and subgrade support voiding were examined.The analysis showed that the uneven subgrade settlement considerably increased the dynamic responses of the levitation control system and maglev vehicle while having a minor influence on those of the track-ground girder.The influence of a single ground girder settling was the strongest,and adjacent sides’settling of two ground girders was the weakest for the vibration of a maglev train.An extremely large uneven settlement exceeding 6 mm led to active levitation control system instability.The subgrade support voiding enlarged the vehicle-induced vibration of the track ground girder.
文摘Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulating material to ensure good reliability.Flow-front merging usually occurs during the molding process,and air is then trapped under the chip,which can form voids in the molded product.The void under the chip may cause stability and reliability problems.However,the flow process is unobservable during the transfer molding process.The engineer can only check for voids in the molded product after the process is complete.Previous studies have used fluid visualization experiments and developed computational fluid dynamics simulation tools to investigate this issue.However,a critical gap remains in establishing a comprehensive three-dimensional model that integrates two-phase flow,accurate venting settings,and fluid surface tension for molded underfill void evaluation—validated by experimental fluid visualization.This study aims to address this gap in the existing literature.In this study,a fluid visualization experiment was designed to simulate the transfer molding process,allowing for the observation of flow-front merging and void formation behaviors.For comparison,a three-dimensional mold flow analysis was also performed.It was found that the numerical simulation of the trapped air compression process under the chip was more accurate when considering the capillary force.The effect of design factors is evaluated in this paper.The results show that the most important factors for void size are fluid viscosity,the gap height under the chip,transfer time,contact angle between the fluid and the contact surfaces,and transfer pressure.Specifically,a smaller gap height beneath the chip aggravates void formation,while lower viscosity,extended transfer time,reduced contact angle,and increased transfer pressure are effective in minimizing void size.The overall results of this study will be useful for product and process design in selecting appropriate solutions for IC packaging,particularly in the development of void-free molded-underfill flip-chip packages.These findings support the optimization of industrial packaging processes in semiconductor manufacturing by guiding material selection and process parameters,ultimately enhancing package reliability and yield.
基金the National Natural Science Foundation of China(Grant Nos.42172298,42002289)the Shanghai Geological Star Program for their financial support.
文摘Compaction grouting is primarily applied based on empiricism,and it is challenging to quantify its densification effect.To address this issue,five sets of laboratory model tests on ideal compaction grouting were conducted,with varying pressures from 400 kPa to 800 kPa,to quantitatively evaluate the densification effect in unsaturated soils.The response of surrounding soil during compaction grouting was monitored.The changes in dry density and void ratio induced by compaction grouting were obtained by monitoring volumetric water content to determine compaction efficiency.In addition,a model was developed and validated to predict the effective compaction range.The results show that soil dry density increased rapidly during compaction grouting before being stabilized at a consistent level.As expected,it is positively correlated with grouting pressures(GPs)and negatively correlated with the distance from the injection point.At higher GPs,the difference in densification effect around the injection point after compaction grouting was significant.Interestingly,variations in ultimate dry density and peak earth pressures perpendicular to the injection direction exhibited axisymmetric behavior around the injection point when comparing the dry density and earth pressure results.Furthermore,soil densification resulted in a decrease in suction.However,no significant effect of GP on suction at different soil positions was observed.Moreover,compaction efficiency decreased with increasing distance from the injection point,showing a strong linear relationship.In addition,the model results for the effective compaction range were basically consistent with the extrapolated values from the experimental results.
基金supported by the National Natural Science Foundation of China(Grant No.12372367)the Special Foundation of the Institute of Fluid Physics of China Academy of Engineering Physics(Grant No.2022-YCHT-0641).
文摘This work investigates the dynamic response of a monocrystalline nickel-titanium(NiTi)alloy at the atomic scale.The results deduced from non-equilibrium molecular dynamics modeling demonstrate that no shear deformation band(SDB)appears in the sample at an impact velocity of less than 0.75 km/s.As this velocity increases,shear deformations become pronouncedly localized,and the average spacing between SDBs decreases until it stabilizes.Combining shear stress and particle velocity profiles,the survival of SDBs is found to be closely associated with plastic deformation.The dislocations clustering around SDBs predominantly exhibit 100 partial dislocations,whereas 1/2111 full dislocations are dominant in those regions without SDBs.Void nucleation always occurs on SDBs.Subsequently,void growth promotes a change in the SDB distribution characteristic.For the case without SDB,voids are randomly nucleated,and the void growth exhibits a non-uniform manner.Thus,there is an interaction between shear localization and void evolution in the NiTi alloy subjected to intensive loading.This study is expected to provide in-depth insights into the microscopic mechanism of NiTi dynamic damage.
基金supported by the National Natural Science Foundation of China (Grant Nos.52278334 and 4197724)Fundamental Research Funds for the Central Universities (Grant No.2242024k30066).
文摘It has been well recognized that sand particles significantly affect the mechanical properties of reconstituted sandy clays,including the hosted clay and sand particles.However,interrelation between the permeability and compressibility of reconstituted sandy clays by considering the structural effects of sand particles is still rarely reported.For this,a series of consolidation-permeability coefficient tests were conducted on reconstituted sandy clays with different sand fractions(ψ_(ss)),initial void ratio of hosted clays(e_(c0))and void ratio at liquid limit of hosted clays(e_(cL)).The roles of ψ_(ss) in both the relationships of permeability coefficient of hosted clay(k_(v-hosted clay))versus effective vertical stress(σ'_(v))and void ratio of hosted clay(e_(c-hosted clay))versus σ'_(v) were analyzed.The results show that the permeability coefficient of reconstituted sandy clays(k_(v))is dominated by hosted clay(k_(v)=k_(v-hosted clay)).Both ψ_(ss) and σ'_(v) affect the k_(v) of sandy clays by changing the e_(c-hosted clay) at any given σ'_(v).Due to the partial contacts and densified clay bridges between the sand particles(i.e.structure effects),the e_(c-hosted clay) in sandy clays is higher than that in clays at the same σ'_(v)v.The k_(v)-e_(c-hosted clay) relationship of sandy clays is independent of σ'_(v) and ψ_(ss)but is a function of e_(cL).The types of hosted clays affect the k_(v) of sandy clays by changing the e_(cL).Based on the relationship between permeability coefficient and void ratio for the reconstituted clays,an empirical method for determining the k_(v) is proposed and validated for sandy clays.The predicted values are almost consistent with the measured values with k_(v-predicted)=k_(v-measured)=0.6-2.5.
文摘Dear Editor,Primary bladder neck obstruction(PBNO)affects approximately 28%–54%of men[1].Its etiology remains unclear.Symptoms of PBNO present as voiding(e.g.,decreased force of stream,hesitancy,intermittent stream,and incomplete emptying),storage(e.g.,frequency,urgency,urge incontinence,and nocturia),or a combination of both[2].Untreated PBNO can lead to bladder dysfunction,bladder diverticula,hydronephrosis,and impaired renal function[3].
文摘Often in abandoned mine sites are present both underground voids produced by mining and the tailings of treatment plant.An interesting solution for the rehabilitation of the sites would be to place the tailings of the process in the underground mining voids,thus obtaining the reclamation of surface areas and the stabilization of abandoned voids to prevent the dangerous phenomena of subsidence.However,these operations require inert waste,which must not be source of pollution,and the choice of a water/solid optimum to ensure good conditions of pumpability.
基金The project supported by the National Natural Science Foundation of China
文摘According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this paper, an important integral relation is given, which can be considered essentially as the generalized pr- inciple of virtual work. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem of work in theory of elastic materials with voids, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field and two-field generalized variational principles, and the principle of minimum potential and complementary energies. Furthermore, with this appro ach, the intrinsic relationship among various principles can be explained clearly.
文摘This paper aims at investigating the effect of voids on the tensile properties of [(±45)4/(0,90)/(±45)2] S and [(±45)/0 4/(±45)(0,90)] S composites.Specimens with void contents in the range of 0.4% to 9.0% were fabricated from carbon/epoxy fabric.The void content was determined by ultrasonic attenuation and optical image analysis,and microscopic inspection was also used to analyze the shape and size of the voids.The influence of voids on the tensile strength and modulus of both stacking sequence is compared in terms of the size and the shape of the voids.The effect of voids on the initiation and propagation of tensile failure of both stacking sequence composite was investigated.
文摘The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material.
基金National Natural Science Foundation of China under Grant Nos.51675525 and 11725211.
文摘A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed to obtain high-resolution designs with a relatively low computational cost.Ersatz material model based on Greville abscissae collocation scheme is utilised to represent both the Young’s modulus of the material and the density field.Two benchmark examples are tested to illustrate the effectiveness of the proposed method.Numerical results show that high-resolution designs can be obtained with relatively low computational cost,and the optimisation can be significantly improved without introducing additional DOFs.
基金the National Natural Science Foundation of China(Nos.51461135001 and 51741804)the Natural Science Foundation of Hunan Province,China(No.2017JJ2066)the Scientific Research Project of Education Department,Hunan Province,China(No.17A054)
文摘Four cellulose ethers(CEs) were compared for their effects on the pore structure of cement paste using mercury intrusion porosimetry. The experimental results show that the total pore volume and porosity of cement pastes containing the four cellulose ethers are significantly higher than that of the pure cement pastes and the total pore volume and porosity of cement pastes containing HEC(hydroxyethyl cellulose ether) or low viscosity cellulose ethers are low in four CEs. By changing the surface tension and viscosity of liquid phase and the strengthening of liquid film between air voids in cement pastes, CEs affect the formation, diameter evolution and upward movement of air voids and the pore structure of hardening cement paste. For the four CEs, the pore volume of cement pastes containing HEC or low viscosity cellulose ethers is higher with the diameter of 30-70 nm while lower with the diameter larger than 70 nm. CEs affect the pore structure of cement paste mainly through their effects on the evolvement of the small air voids into bigger ones when the pore diameter is below 70 nm and their effects on the entrainment and stabilization of air voids when the pore diameter is above 70 nm.
基金Projects(51275178,51405162,51205135) supported by the National Natural Science Foundation of ChinaProjects(20110172110003,20130172120055) supported by the Doctoral Program of Higher Education of China
文摘The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially at the interface,and the averagesize of the voids increases with both the time and strain rate.There is an obvious coalescence of the voids at a large strain rate whenthe deformation is applied along the interface under both constant and cyclic strain rate conditions.For the cyclic strain rate appliedalong the interface,the growth exponent of Kirkendall voids increases with increasing the strain rate when the strain rate is largerthan1.0×10-6,while it increases initially and then decreases when the strain rate is smaller than9.0×10?7.The growth exponent ofKirkendall voids increases initially and then decreases gradually with increasing the length of cyclic period under a square-waveform constant strain rate.
基金The authors acknowledge the support of Swiss Federal Railways with the experimental measurements.
文摘The deterioration of the sleeper support on the ballasted track begins with the accumulation of sleeper voids.The increased dynamic loading in the voided zone and the ballast contact conditions cause the accelerated growth of the settlements in the voided zones,which results in the appearance of local instabilities like ballast breakdown,white spots,subgrade defects,etc.The recent detection and quantification of the sleeper voids with track-side and onboard monitoring can help to avoid or delay the development of local instabilities.The present paper is devoted to the study of the dynamic behavior of railway track with sleeper voids in the ballast breakdown zone.The result of the experimental track-side measurements of rail acceleration and deflection is presented.The analysis shows the existence of the dynamic impact during wheel entry in the voided zone.However,the measured dynamic impact is subjected to the bias of the track-side measurement method.Both the mechanism of the impact and the measurement aspects are explained by using the one-beam model on viscoelastic foundation.The void features in the dynamic behavior are analyzed for the purpose of track-side and onboard monitoring.A practical method of the void parameter quantification is proposed.