Introducing covalently crosslinked network to polymer matrix can merge the advantages in reprocessing and durability of polymers.In this contribution,a series of high-performance vitrimeric elastomers were achieved vi...Introducing covalently crosslinked network to polymer matrix can merge the advantages in reprocessing and durability of polymers.In this contribution,a series of high-performance vitrimeric elastomers were achieved via polycondensation.The topological structures of polymers were tuned by varying the feeding ratios of bisacetoacetate,hex–substituted bisacetoacetate,bisamine and tris(2-aminoethyl)amine.With these structural manipulations,the vitrimeric elastomers presented great elastic recovery properties(strain recovery value up to 80%)benefiting from the introduction of long chain branch.Furthermore,the elastomers exhibited excellent reprocessing property,water vapor/oxygen barrier and adhesive properties.Specially,the elastomers could be degraded into monomer under acid conditions which enabled the elastomer synthesis again in closed loop recycling system.The ease of the polycondensation in this work to prepare highly elastic and recyclable vitrimeric elastomers demonstrated exciting opportunities for the synthesis of sustainable polymers.展开更多
Poly(butylene succinate)(PBS)exhibits many advantages,such as renewability,biodegradability,and impressive thermal and mechanical properties,but is limited by the low melt viscosity and strength resulted from the line...Poly(butylene succinate)(PBS)exhibits many advantages,such as renewability,biodegradability,and impressive thermal and mechanical properties,but is limited by the low melt viscosity and strength resulted from the linear structure.To address this,vitrimeric network was introduced to synthesize PBS vitrimers(PBSVs)based on dynamic imine bonds through melt polymerization of hydroxyl-terminated PBS with vanillin derived imine containing compound and hexamethylene diisocyanate using trimethylolpropane as a crosslinking monomer.PBSVs with different crosslinking degrees were synthesized through changing the content of the crosslinking monomer.The effect of crosslinking degree on the thermal,theological,mechanical properties,and stress relaxation behavior of the PBSVs was studied in detail.The results demonstrated that the melt viscosity,melt strength,and heat resistance were enhanced substantially without obvious depression in crystallizability,thermal stability,and mechanical properties through increasing crosslinking degree.In addition,the PBSVs exhibit thermal reprocessability with mechanical properties recovered by more than 90%even after processing for three times.Furthermore,PBSV with improved melt properties shows significantly improved foamability compared to commercial PBS.This research contributes to the advancement of polymer technology by successfully developing PBS vitrimers with improved properties,showcasing their potential applications in sustainable and biodegradable materials.展开更多
The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it ...The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it difficult to efficiently degrade and recycle decommissioned electrical equipment.In this study,a degradable itaconic acid-based epoxy resin incorporating dynamic covalent bonds was prepared through the integration of ester bonds and disulfide bonds,with itaconic acid as the precursor.The covalent bonding effects on the mechanical,thermal,electrical,and degradation characteristics were systematically evaluated.The experimental results revealed that the introduction of dynamic ester bonds enhanced the mechanical properties and thermal stability of the resin system,achieving a flexural strength of 141.57 MPa and an initial decomposition temperature T_(5%)of up to 344.9℃.The resin system containing dynamic disulfide bonds exhibited a dielectric breakdown strength of 41.11 k V/mm.Simultaneously,the incorporation of disulfide bonds endowed the epoxy resin with remarkable degradability,enabling complete dissolution within 1.5 h at 90℃ in a mixed solution of dithiothreitol(DTT)and N-methylpyrrolidone(NMP).This research provides a valuable reference for the application of itaconic acid-based vitrimer with dynamic covalent bonds in electrical materials,contributing to the development and utilization of environmentally friendly electrical equipment.展开更多
Adhesives play an important role in modern society's production and daily life.Developing robust and sustainable adhesives remains a great challenge.Here we report a sustainable epoxy-vitrimer adhesive with high a...Adhesives play an important role in modern society's production and daily life.Developing robust and sustainable adhesives remains a great challenge.Here we report a sustainable epoxy-vitrimer adhesive with high adhesive strength(about 10 MPa)and reusability(82%strength after 3 times).This adhesive can be fabricated from commercially available products through a straightforward hot-pressing method without the need of solvents.The adhesive process is also simple,requiring only 30 min at 180℃.In addition,the vitrimer adhesive has the advantages of both erasability for reuse and excellent water resistance.This work provides a facile strategy to fabricate high-strength adhesive that ensures reusability,recyclability,low cost of raw materials,and simple processing technology.Simultaneously,it expands the range of potential applications for epoxy vitrimers.展开更多
In this study,we synthesized a series of ABA-type vitrimers by crosslinking the short A moieties of precursors with a bifunctional crosslinker and evaporating the small molecular byproduct.The vitrimer samples thus pr...In this study,we synthesized a series of ABA-type vitrimers by crosslinking the short A moieties of precursors with a bifunctional crosslinker and evaporating the small molecular byproduct.The vitrimer samples thus prepared exhibit linear viscoelasticity dependent on the length of A moiety as well as the content of the crosslinks.When the average number of A monomers per end moiety m=1.1,the crosslinker can only extend the chain but not crosslink the chain.When m becomes 2.8 or higher,introducing a crosslinker first leads to the gelation,whereas excess in crosslinker molecules leads opening of the crosslinking sites and accordingly reentry into the sol regime.Surprisingly,a further increase in the length of the A moieties increases the relaxation time much weaker than the exponential increase seen for the physically crosslinked ABAtype ionomers.We attribute this difference to the distinct relaxation mechanisms:the relaxation of the vitrimer samples is based on relatively independent exchange reactions,which contrasts with the ABA-type ionomers that relax through the collective hopping of connected ionic groups from one ion aggregate to another.展开更多
Realizing multiple locked shapes in pre-oriented liquid crystal elastomers(LCEs)is highly desired for diversifying deformations and enhancing multi-functionality.However,conventional LCEs only deform between two shape...Realizing multiple locked shapes in pre-oriented liquid crystal elastomers(LCEs)is highly desired for diversifying deformations and enhancing multi-functionality.However,conventional LCEs only deform between two shapes for each actuation cycle upon liquid crystal-isotropic phase transitions induced by external stimuli.Here,we propose to regulate the actuation modes and the locked shapes of a pre-orientated epoxy LCE by combining dynamic covalent bonds with cooling-rate-mediated control.The actuation modes can be adjusted on demand by exchange reactions of dynamic covalent bonds.Derived from the established actuation modes,such as elongation,bending,and spiraling,the epoxy LCE displays varied locked shapes at room temperature under different cooling rates.Various mediums are utilized to control the cooling rate,including water,silicone oil,and copper plates.This approach provides a novel way for regulating the actuation modes and locked shapes of cuttingedge intelligent devices.展开更多
Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemic...Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemical structure on aggregate structure of vitrimers,particularly during polymer processing,remains insufficiently investigated.The present study employed commercial maleic anhydride-grafted-high density polyethylene(M-g-HDPE)as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process.Through chemical structure characterization,morphology observation,thermal and mechanical properties investigation,as well as aggregate structure analysis,this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing.A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing,resulting in a lower orientation of the PE chains.However,lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation.The uneven morphology of fibershaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding,which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.Abstract Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemical structure on aggregate structure of vitrimers,particularly during polymer processing,remains insufficiently investigated.The present study employed commercial maleic anhydride-grafted-high density polyethylene(M-g-HDPE)as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process.Through chemical structure characterization,morphology observation,thermal and mechanical properties investigation,as well as aggregate structure analysis,this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing.A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing,resulting in a lower orientation of the PE chains.However,lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation.The uneven morphology of fibershaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding,which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.展开更多
We developed flame retarded polyimine type vitrimers and carbon fibre reinforced composites using two additive and a reactive flame retardant containing phosphorus:ammonium polyphosphate(APP),resorcinol bis(diphenyl p...We developed flame retarded polyimine type vitrimers and carbon fibre reinforced composites using two additive and a reactive flame retardant containing phosphorus:ammonium polyphosphate(APP),resorcinol bis(diphenyl phosphate)(RDP);and N,N’,N’’-tris(2-aminoethyl)-phosphoric acid triamide(TEDAP).We characterised the vitrimer matrix materials by differential scanning calorimetry(DSC),thermal analysis(TGA),limiting oxygen index(LOI),UL-94 test and mass loss calorimetry(MLC),while the vitrimer composites by LOI,UL-94 test,MLC and dynamic mechanical analysis(DMA).We compared the performance of the vitrimer systems to a benchmark pentaerythritol-based aliphatic epoxy resin system(PER).The vitrimer reference had higher thermal stability but lower fire performance than the PER aliphatic reference epoxy.At lower phosphorus content,the vitrimer systems exhibited a melting above their vitrimer transition temperature,which negatively affected their LOI and UL-94 results.From 2%phosphorus content,rapid charring and extinguishing of vitrimers prevented the softening and deforming.The superior performance of these same flame retardants in vitrimer systems could be attributed to the high nitrogen content of imine-based vitrimers in combination with phosphorus flame retardants,exploiting nitrogen-phosphorus synergism.In both matrices,flame retardants with solid phase action lead to better fire performance,while in composites,the lowest peak heat release rates(152 kW/m2 in vitrimer composite)were achieved with RDP acting predominantly in the gas phase,as carbon fibres hindered the intumescent phenomenon.展开更多
The conception of epoxy thermosets with both reprocessability and flame retardancy delineates a new horizon in polymer science,offering a material solution that is not only superior in fire safety but is also environm...The conception of epoxy thermosets with both reprocessability and flame retardancy delineates a new horizon in polymer science,offering a material solution that is not only superior in fire safety but is also environment friendly.Herein,a flame-retardant epoxy vitrimer(EV)was prepared using partially bio-based IADPPO(diphenylphosphine oxide itaconic anhydride)and citric acid as curing reagents via a solvent-free process.Their incorporation created covalent adaptable networks(CANs)in the matrix which promote reprocessability and recyclability.The EV exhibits excellent thermal stability with high initial decomposition temperature(T_(- 5wt%)∼308℃)and high glass transition temperature(T_(g)∼107℃),similar to the blank EV(115℃).The flame retardancy,mechanical properties,transesterification-based reprocessability,and flame-retardant mechanism were investigated.The EV containing 3 wt%phosphorus(EV IADPPO 3P)achieved UL-94 V0 classification with a limiting oxygen index(LOI)of 27%,while the virgin sample Blank EV(without phosphorus)burned completely.Additionally,increased flexural strength of 79%was observed for EV IADPPO 3P compared to Blank EV.Furthermore,the flame-retardant EV showed high malleability and reparability that could be thermomechanically reprocessed without sacrificing the thermal,mechanical,and flame-retardant properties.Thus,the newly developed epoxy vitrimer is not only fire-safe but fulfills the sustainability goals of today’s society.展开更多
基金supported by National Natural Science Foundation of China(NSFC,Nos.21971230,U19B6001,22201003)Excellent Research and Innovation Team Project of Anhui Province(No.2022AH010001)Anhui Province Key Laboratory of Environment-friendly Polymer Materials。
文摘Introducing covalently crosslinked network to polymer matrix can merge the advantages in reprocessing and durability of polymers.In this contribution,a series of high-performance vitrimeric elastomers were achieved via polycondensation.The topological structures of polymers were tuned by varying the feeding ratios of bisacetoacetate,hex–substituted bisacetoacetate,bisamine and tris(2-aminoethyl)amine.With these structural manipulations,the vitrimeric elastomers presented great elastic recovery properties(strain recovery value up to 80%)benefiting from the introduction of long chain branch.Furthermore,the elastomers exhibited excellent reprocessing property,water vapor/oxygen barrier and adhesive properties.Specially,the elastomers could be degraded into monomer under acid conditions which enabled the elastomer synthesis again in closed loop recycling system.The ease of the polycondensation in this work to prepare highly elastic and recyclable vitrimeric elastomers demonstrated exciting opportunities for the synthesis of sustainable polymers.
基金financially supported by the National Natural Science Foundation of China(No.51973176)the Chongqing Talent Plan for Young Top-Notch Talents(No.CQYC2021059217)the Fundamental Research Funds for the Central Universities(No.SWUXDJH202314)。
文摘Poly(butylene succinate)(PBS)exhibits many advantages,such as renewability,biodegradability,and impressive thermal and mechanical properties,but is limited by the low melt viscosity and strength resulted from the linear structure.To address this,vitrimeric network was introduced to synthesize PBS vitrimers(PBSVs)based on dynamic imine bonds through melt polymerization of hydroxyl-terminated PBS with vanillin derived imine containing compound and hexamethylene diisocyanate using trimethylolpropane as a crosslinking monomer.PBSVs with different crosslinking degrees were synthesized through changing the content of the crosslinking monomer.The effect of crosslinking degree on the thermal,theological,mechanical properties,and stress relaxation behavior of the PBSVs was studied in detail.The results demonstrated that the melt viscosity,melt strength,and heat resistance were enhanced substantially without obvious depression in crystallizability,thermal stability,and mechanical properties through increasing crosslinking degree.In addition,the PBSVs exhibit thermal reprocessability with mechanical properties recovered by more than 90%even after processing for three times.Furthermore,PBSV with improved melt properties shows significantly improved foamability compared to commercial PBS.This research contributes to the advancement of polymer technology by successfully developing PBS vitrimers with improved properties,showcasing their potential applications in sustainable and biodegradable materials.
基金financially supported by the National Natural Science Foundation of China(No.52377025)。
文摘The most widely used bisphenol A-type epoxy resin(DGEBA)in electrical engineering demonstrates excellent mechanical and electrical properties.However,the insoluble and infusible characteristics of cured DGEBA make it difficult to efficiently degrade and recycle decommissioned electrical equipment.In this study,a degradable itaconic acid-based epoxy resin incorporating dynamic covalent bonds was prepared through the integration of ester bonds and disulfide bonds,with itaconic acid as the precursor.The covalent bonding effects on the mechanical,thermal,electrical,and degradation characteristics were systematically evaluated.The experimental results revealed that the introduction of dynamic ester bonds enhanced the mechanical properties and thermal stability of the resin system,achieving a flexural strength of 141.57 MPa and an initial decomposition temperature T_(5%)of up to 344.9℃.The resin system containing dynamic disulfide bonds exhibited a dielectric breakdown strength of 41.11 k V/mm.Simultaneously,the incorporation of disulfide bonds endowed the epoxy resin with remarkable degradability,enabling complete dissolution within 1.5 h at 90℃ in a mixed solution of dithiothreitol(DTT)and N-methylpyrrolidone(NMP).This research provides a valuable reference for the application of itaconic acid-based vitrimer with dynamic covalent bonds in electrical materials,contributing to the development and utilization of environmentally friendly electrical equipment.
基金supported by the National Natural Science Foundation of China(No.22175106)the Beijing Nova Program(No.20220484126)Young Elite Scientists Sponsorship Program by CAST(No.YESS20230470)。
文摘Adhesives play an important role in modern society's production and daily life.Developing robust and sustainable adhesives remains a great challenge.Here we report a sustainable epoxy-vitrimer adhesive with high adhesive strength(about 10 MPa)and reusability(82%strength after 3 times).This adhesive can be fabricated from commercially available products through a straightforward hot-pressing method without the need of solvents.The adhesive process is also simple,requiring only 30 min at 180℃.In addition,the vitrimer adhesive has the advantages of both erasability for reuse and excellent water resistance.This work provides a facile strategy to fabricate high-strength adhesive that ensures reusability,recyclability,low cost of raw materials,and simple processing technology.Simultaneously,it expands the range of potential applications for epoxy vitrimers.
基金financially supported by the National Natural Science Foundation of China(Nos.22173095 and 52103021)。
文摘In this study,we synthesized a series of ABA-type vitrimers by crosslinking the short A moieties of precursors with a bifunctional crosslinker and evaporating the small molecular byproduct.The vitrimer samples thus prepared exhibit linear viscoelasticity dependent on the length of A moiety as well as the content of the crosslinks.When the average number of A monomers per end moiety m=1.1,the crosslinker can only extend the chain but not crosslink the chain.When m becomes 2.8 or higher,introducing a crosslinker first leads to the gelation,whereas excess in crosslinker molecules leads opening of the crosslinking sites and accordingly reentry into the sol regime.Surprisingly,a further increase in the length of the A moieties increases the relaxation time much weaker than the exponential increase seen for the physically crosslinked ABAtype ionomers.We attribute this difference to the distinct relaxation mechanisms:the relaxation of the vitrimer samples is based on relatively independent exchange reactions,which contrasts with the ABA-type ionomers that relax through the collective hopping of connected ionic groups from one ion aggregate to another.
基金financially supported by the National Natural Science Foundation of China(No.22375114)。
文摘Realizing multiple locked shapes in pre-oriented liquid crystal elastomers(LCEs)is highly desired for diversifying deformations and enhancing multi-functionality.However,conventional LCEs only deform between two shapes for each actuation cycle upon liquid crystal-isotropic phase transitions induced by external stimuli.Here,we propose to regulate the actuation modes and the locked shapes of a pre-orientated epoxy LCE by combining dynamic covalent bonds with cooling-rate-mediated control.The actuation modes can be adjusted on demand by exchange reactions of dynamic covalent bonds.Derived from the established actuation modes,such as elongation,bending,and spiraling,the epoxy LCE displays varied locked shapes at room temperature under different cooling rates.Various mediums are utilized to control the cooling rate,including water,silicone oil,and copper plates.This approach provides a novel way for regulating the actuation modes and locked shapes of cuttingedge intelligent devices.
基金financially supported by the National Natural Science Foundation of China(Nos.22278065 and 22073015)。
文摘Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemical structure on aggregate structure of vitrimers,particularly during polymer processing,remains insufficiently investigated.The present study employed commercial maleic anhydride-grafted-high density polyethylene(M-g-HDPE)as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process.Through chemical structure characterization,morphology observation,thermal and mechanical properties investigation,as well as aggregate structure analysis,this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing.A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing,resulting in a lower orientation of the PE chains.However,lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation.The uneven morphology of fibershaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding,which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.Abstract Vitrimers have emerged as a prominent research area in the field of polymer materials.Most of the studies have focused on synthesizing polymers with versatile dynamic crosslinking structures,while the impact of chemical structure on aggregate structure of vitrimers,particularly during polymer processing,remains insufficiently investigated.The present study employed commercial maleic anhydride-grafted-high density polyethylene(M-g-HDPE)as the matrix and hexanediol as the crosslinker to facilely obtain fiber-shaped HDPE vitrimers through a reaction extrusion and post-drawing process.Through chemical structure characterization,morphology observation,thermal and mechanical properties investigation,as well as aggregate structure analysis,this work revealed the influence of dynamic bonds on the formation of aggregate structures during fiber-shaped vitrimers processing.A small amount of dynamic bonds in HDPE restricts the motion of PE chain during melt-extruding and post-drawing,resulting in a lower orientation of the PE chains.However,lamellar growth and fibril formation during post-drawing at high temperature are enhanced to some extent due to the competition between dynamic bond and chain relaxation.The uneven morphology of fibershaped HDPE vitrimers can be attributed to the stronger elastic effect brought by dynamic bonding,which plays a more dominant role in determining the mechanical properties of fiber-shaped vitrimers compared to aggregate structure.
基金Project no.TKP-6-6/PALY-2021 has been implemented with the support provided by the Ministry of CultureInnovation of Hungary from the National Research,Development and Innovation Fund,financed under the TKP2021-NVA funding scheme+4 种基金funded by the National Research,Development and In-novation Office(NKFIH K142517)This research has been imple-mented with the support of the 2021-1.2.4-TÉT-2021-00050,which encourages scientific and technological cooperation between USA and HungarySupport from theÚNKP-23-3-II-BME-227,ÚNKP-23-5-BME-409 andÚNKP-23-5-BME-417 New National Excellence Pro-gram of the Ministry for Culture and Innovation from the source of the National Research,Development and Innovation Fund is acknowledgedsupported by the János Bolyai Research Scholarship of the Hungarian Academy of Sci-ences No.BO/00508/22/6 and No BO/00980/23/7support of Bertalan Papp in preparation works.
文摘We developed flame retarded polyimine type vitrimers and carbon fibre reinforced composites using two additive and a reactive flame retardant containing phosphorus:ammonium polyphosphate(APP),resorcinol bis(diphenyl phosphate)(RDP);and N,N’,N’’-tris(2-aminoethyl)-phosphoric acid triamide(TEDAP).We characterised the vitrimer matrix materials by differential scanning calorimetry(DSC),thermal analysis(TGA),limiting oxygen index(LOI),UL-94 test and mass loss calorimetry(MLC),while the vitrimer composites by LOI,UL-94 test,MLC and dynamic mechanical analysis(DMA).We compared the performance of the vitrimer systems to a benchmark pentaerythritol-based aliphatic epoxy resin system(PER).The vitrimer reference had higher thermal stability but lower fire performance than the PER aliphatic reference epoxy.At lower phosphorus content,the vitrimer systems exhibited a melting above their vitrimer transition temperature,which negatively affected their LOI and UL-94 results.From 2%phosphorus content,rapid charring and extinguishing of vitrimers prevented the softening and deforming.The superior performance of these same flame retardants in vitrimer systems could be attributed to the high nitrogen content of imine-based vitrimers in combination with phosphorus flame retardants,exploiting nitrogen-phosphorus synergism.In both matrices,flame retardants with solid phase action lead to better fire performance,while in composites,the lowest peak heat release rates(152 kW/m2 in vitrimer composite)were achieved with RDP acting predominantly in the gas phase,as carbon fibres hindered the intumescent phenomenon.
基金partially supported by the Swiss National Sci-ence Foundation(Grant No.200021L_196923)by funds from the Zürcher Stiftung für Textilforschung(Winterthur,Switzerland)supported by the China Scholarship Council(CSC No.202006260103)。
文摘The conception of epoxy thermosets with both reprocessability and flame retardancy delineates a new horizon in polymer science,offering a material solution that is not only superior in fire safety but is also environment friendly.Herein,a flame-retardant epoxy vitrimer(EV)was prepared using partially bio-based IADPPO(diphenylphosphine oxide itaconic anhydride)and citric acid as curing reagents via a solvent-free process.Their incorporation created covalent adaptable networks(CANs)in the matrix which promote reprocessability and recyclability.The EV exhibits excellent thermal stability with high initial decomposition temperature(T_(- 5wt%)∼308℃)and high glass transition temperature(T_(g)∼107℃),similar to the blank EV(115℃).The flame retardancy,mechanical properties,transesterification-based reprocessability,and flame-retardant mechanism were investigated.The EV containing 3 wt%phosphorus(EV IADPPO 3P)achieved UL-94 V0 classification with a limiting oxygen index(LOI)of 27%,while the virgin sample Blank EV(without phosphorus)burned completely.Additionally,increased flexural strength of 79%was observed for EV IADPPO 3P compared to Blank EV.Furthermore,the flame-retardant EV showed high malleability and reparability that could be thermomechanically reprocessed without sacrificing the thermal,mechanical,and flame-retardant properties.Thus,the newly developed epoxy vitrimer is not only fire-safe but fulfills the sustainability goals of today’s society.