针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减...针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡.展开更多
文摘针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡.