期刊文献+
共找到225篇文章
< 1 2 12 >
每页显示 20 50 100
Simultaneous Localization and Mapping Technology Based on Project Tango 被引量:2
1
作者 XU Pei SU Kehua +1 位作者 HONG Cheng ZHANG Dengyi 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第2期176-184,共9页
Aiming at the problem of system error and noise in simultaneous localization and mapping(SLAM) technology, we propose a calibration model based on Project Tango device and a loop closure detection algorithm based on v... Aiming at the problem of system error and noise in simultaneous localization and mapping(SLAM) technology, we propose a calibration model based on Project Tango device and a loop closure detection algorithm based on visual vocabulary with memory management. The graph optimization is also combined to achieve a running application. First, the color image and depth information of the environment are collected to establish the calibration model of system error and noise. Second, with constraint condition provided by loop closure detection algorithm, speed up robust feature is calculated and matched. Finally, the motion pose model is solved, and the optimal scene model is determined by graph optimization method. This method is compared with Open Constructor for reconstruction on several experimental scenarios. The results show the number of model's points and faces are larger than Open Constructor's, and the scanning time is less than Open Constructor's. The experimental results show the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 simultaneous localization and mapping PROJECT TANGO LOOP CLOSURE detection visual VOCABULARY GRAPH optimization
原文传递
Semi-Direct Visual Odometry and Mapping System with RGB-D Camera
2
作者 Xinliang Zhong Xiao Luo +1 位作者 Jiaheng Zhao Yutong Huang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期83-93,共11页
In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camer... In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camera motion of two consecutive RGB-D frames by minimizing the photometric error.To permit outliers and noise,a robust sensor model built upon the t-distribution and an error function mixing depth and photometric errors are used to enhance the accuracy and robustness.Local graph optimization based on key frames is used to reduce the accumulative error and refine the local map.The loop closure detection method,which combines the appearance similarity method and spatial location constraints method,increases the speed of detection.Experimental results demonstrate that the proposed approach achieves higher accuracy on the motion estimation and environment reconstruction compared to the other state-of-the-art methods. Moreover,the proposed approach works in real-time on a laptop without a GPU,which makes it attractive for robots equipped with limited computational resources. 展开更多
关键词 RGB-D simultaneous localization and mapping(SLAM) visual ODOMETRY localization 3D mapping LOOP CLOSURE detection
在线阅读 下载PDF
Visual Simultaneous Localization and Mapping for Highly Dynamic Environments
3
作者 Yuxin Zheng Weichen Dai +2 位作者 Yu Zhang Wenhao Guan Chengfei Liu 《IET Cyber-Systems and Robotics》 2025年第2期27-35,共9页
This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrat... This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrates learning-based and geometry-based methods to address the challenges posed by moving objects.The learning-based approach leverages image segmentation to remove previously trained objects,whereas the geometry-based approach utilises point correlation to eliminate unseen objects.By complementing each other,these methods enhance the robustness of the SLAM system in dynamic scenarios.Experimental results demonstrate that the proposed method effectively removes dynamic objects.Comparative studies with state-of-the-art algorithms further show that the proposed method achieves superior accuracy and robustness. 展开更多
关键词 dynamic environment NAVIGATION ROBOTS simultaneous localization and mapping(SLAM) visual
原文传递
Visual Simultaneous Localization and Mapping for Highly Dynamic Environments
4
作者 Yuxin Zheng Weichen Dai +2 位作者 Yu Zhang Wenhao Guan Chengfei Liu 《IET Cyber-Systems and Robotics》 2025年第1期120-128,共9页
This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrat... This paper presents a visual simultaneous localization and mapping(SLAM)system designed for highly dynamic environments,capable of eliminating dynamic objects using only visual information.The proposed system integrates learning-based and geometry-based methods to address the challenges posed by moving objects.The learning-based approach leverages image segmentation to remove previously trained objects,whereas the geometry-based approach utilises point correlation to eliminate unseen objects.By complementing each other,these methods enhance the robustness of the SLAM system in dynamic sce-narios.Experimental results demonstrate that the proposed method effectively removes dynamic objects.Comparative studies with state-of-the-art algorithms further show that the proposed method achieves superior accuracy and robustness. 展开更多
关键词 dynamic environment NAVIGATION ROBOTS simultaneous localization and mapping(SLAM) visual
原文传递
基于VSLAM的室内场景重建与虚实遮挡的边缘优化方法
5
作者 刘佳 张增伟 陈大鹏 《计算机辅助设计与图形学学报》 北大核心 2025年第5期744-752,共9页
在增强现实环境中,虚拟物体和真实物体的融合效果经常受到虚实遮挡的影响.为了提升虚实遮挡效果,提出一种室内场景下基于视觉同步定位与建图(VSLAM)的三维物体稠密重建与分割的方法.首先利用YOLOv5s和ORB-SLAM2检测并去除环境中的动态... 在增强现实环境中,虚拟物体和真实物体的融合效果经常受到虚实遮挡的影响.为了提升虚实遮挡效果,提出一种室内场景下基于视觉同步定位与建图(VSLAM)的三维物体稠密重建与分割的方法.首先利用YOLOv5s和ORB-SLAM2检测并去除环境中的动态特征点,只利用静态特征点构建准确的点云地图;然后使用OPTICS聚类算法约束体素边缘并进行网格分割;最后通过结合形状先验算法对分割后的点云进行预测重建,使分割的物体边缘更加准确.在多个数据集上检验了所提方法,并执行动态特征点去除和虚实遮挡实验.结果表明,在动态场景下相比传统ORB-SLAM2,相机的定位精度提升了92.62%,点云的重建精度提升了35.00%,说明该方法可以准确地定位虚拟物体和真实物体的遮挡边缘并进行分割,同时保持形状化的重建结果,使得虚实遮挡效果更加真实自然. 展开更多
关键词 增强现实 虚实遮挡 视觉同步定位与建图 三维重建 图像分割
在线阅读 下载PDF
动态场景下基于深度学习的MR VSLAM综述
6
作者 高春艳 郭超阳 +1 位作者 孙凌宇 张明路 《计算机仿真》 2025年第3期466-471,共6页
视觉同时定位与地图构建(VSLAM)在动态场景中性能下降和缺乏鲁棒性已成为其实际应用的主要障碍。为应对复杂场景及其参数高度动态的挑战,将深度学习网络与VSLAM系统相结合,分割出场景中的静态背景和动态目标,实现移动机器人的精准定位... 视觉同时定位与地图构建(VSLAM)在动态场景中性能下降和缺乏鲁棒性已成为其实际应用的主要障碍。为应对复杂场景及其参数高度动态的挑战,将深度学习网络与VSLAM系统相结合,分割出场景中的静态背景和动态目标,实现移动机器人的精准定位。介绍已经用于VSLAM系统的深度学习网络,综合分析动态场景下基于深度学习的移动机器人VSLAM系统的研究进展,从动态目标删除与静态背景重建、动态目标跟踪与重建两方面进行综述,并对其深入应用做出展望。 展开更多
关键词 移动机器人 视觉同时定位与地图构建 深度学习 动态场景
在线阅读 下载PDF
Visual attention and clustering-based automatic selection of landmarks using single camera 被引量:1
7
作者 CHUHO Yi YONGMIN Shin JUNGWON Cho 《Journal of Central South University》 SCIE EI CAS 2014年第9期3525-3533,共9页
An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoo... An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases. 展开更多
关键词 simultaneous localization and mapping automatic landmark selection visual attention CLUSTERING
在线阅读 下载PDF
基于自适应阈值和速度优化的轻量化语义VSLAM方法
8
作者 齐浩 付悦欣 +2 位作者 胡祝华 吴佳琪 赵瑶池 《北京航空航天大学学报》 北大核心 2025年第7期2562-2572,共11页
视觉同步定位与地图构建(VSLAM)是一种利用视觉等传感器来获取未知环境信息的技术,广泛应用于无人驾驶、机器人、增强现实等领域。然而,室内场景下的VSLAM对动态对象进行像素级的语义分割存在较高的计算开销,并且光照变化使得动态物体... 视觉同步定位与地图构建(VSLAM)是一种利用视觉等传感器来获取未知环境信息的技术,广泛应用于无人驾驶、机器人、增强现实等领域。然而,室内场景下的VSLAM对动态对象进行像素级的语义分割存在较高的计算开销,并且光照变化使得动态物体的外观也发生变化,导致其与静态环境产生遮挡或混淆。针对以上问题,提出了一种基于自适应阈值和速度优化的轻量化语义VSLAM模型。采用了轻量化的一阶段目标检测网络YOLOv7-tiny,结合光流算法,有效地检测了图像的动态区域,并对不稳定特征点进行了剔除。同时,特征点提取算法基于输入图像的对比度信息,自适应地调整阈值。结合二进制词袋与局部建图线程精简的优化方法,加快了加载和匹配速度,提高了系统在室内动态场景下的运行速度。实验结果表明:所提算法在室内高动态场景下能够有效地剔除动态特征点,提高了相机的定位精度。在运行速率方面平均处理速度达到了19.8 FPS,在实际场景下可以满足实时性的需求。 展开更多
关键词 vslam 动态场景 YOLOv7-tiny 自适应阈值 特征点
原文传递
面向强光环境基于灰度不变假设的VSLAM算法
9
作者 陈孟元 符乙 +1 位作者 李鹏飞 徐奥 《中国惯性技术学报》 北大核心 2025年第4期350-358,366,共10页
针对移动机器人在强光环境运动时易出现特征提取困难,极端光照环境下灰度不变假设失效导致光流跟踪误差较大的问题,提出了一种融合改进高光抑制和光流网络的视觉同步定位与地图构建(VSLAM)算法。首先,为了保证图像光照一致性,设计了一... 针对移动机器人在强光环境运动时易出现特征提取困难,极端光照环境下灰度不变假设失效导致光流跟踪误差较大的问题,提出了一种融合改进高光抑制和光流网络的视觉同步定位与地图构建(VSLAM)算法。首先,为了保证图像光照一致性,设计了一种基于高光注意力机制的高光抑制网络,引导模型关注高光特征信息。其次,针对灰度不变约束的场景受限问题,提出了一种基于蛇形卷积的光流网络,将基于灰度不变假设的光流法与卷积特征相结合,提取并跟踪卷积特征点,从而得到对光照稳健的光流法。最后,在具有光照变换的公开数据集和真实场景中进行验证。实验结果表明,所提算法在KITTI数据集上与OV2SLAM算法相比,绝对轨迹误差平均降低6.86%,相对位姿误差平均降低17.30%;在真实场景中与OV2SLAM算法相比,相对位姿误差降低了13.23%。 展开更多
关键词 视觉同步定位与地图构建 强光环境 灰度不变假设 高光抑制 光流法
在线阅读 下载PDF
弱纹理环境下点线融合鲁棒视觉SLAM算法
10
作者 杨官学 刘岳松 +2 位作者 刘慧 沈跃 沈亚运 《计算机工程与应用》 北大核心 2026年第2期313-324,共12页
针对弱纹理和变光照环境下基于点特征的视觉SLAM(simultaneous localization and mapping)算法轨迹漂移的问题,提出了一种基于改进自适应阈值ELSED算法(Adaptive-ELSED)的快速点线融合双目视觉SLAM算法。通过在ELSED算法中添加自适应阈... 针对弱纹理和变光照环境下基于点特征的视觉SLAM(simultaneous localization and mapping)算法轨迹漂移的问题,提出了一种基于改进自适应阈值ELSED算法(Adaptive-ELSED)的快速点线融合双目视觉SLAM算法。通过在ELSED算法中添加自适应阈值矩阵,动态调整不同光照条件下梯度阈值,并使用长度抑制和短线合并策略,提高线特征的质量。利用基于双目几何约束和图像结构相似性(SSIM)进行快速线段特征三角化。基于历史位姿及误差分析获取初始位姿,通过自适应因子实现光束法平差过程中点线特征的更有效融合。实验结果表明,所提算法在提高线特征质量的同时,耗时仅为LSD算法的50%,线特征匹配速度较传统LBD算法提升67%,挑战性场景下轨迹误差较ORB-SLAM3降低62.2%,系统的平均跟踪帧率为27帧/s,在保证系统实时性的同时,显著提升了系统在弱纹理、变光照环境下的精度和鲁棒性。 展开更多
关键词 双目视觉 弱纹理 视觉同步定位与地图构建(SLAM) 点线特征 特征匹配
在线阅读 下载PDF
基于ROS的自主无人机VSLAM研究 被引量:5
11
作者 刘峰 吕强 +1 位作者 郭峰 王国胜 《现代防御技术》 北大核心 2016年第6期61-66,共6页
针对未知复杂环境中无人机无法获得外部辅助情况下自主导航所面临的严峻问题,提出在ROS框架下在板运行单目VSLAM算法的自主无人机方案,仅依靠自身摄像机自主地完成SLAM和导航任务。研究VSLAM算法原理与前沿算法ORB-SLAM,设计并搭建了自... 针对未知复杂环境中无人机无法获得外部辅助情况下自主导航所面临的严峻问题,提出在ROS框架下在板运行单目VSLAM算法的自主无人机方案,仅依靠自身摄像机自主地完成SLAM和导航任务。研究VSLAM算法原理与前沿算法ORB-SLAM,设计并搭建了自主导航无人机平台,针对搭建的无人机平台方案和特点完成视觉定位部分的改进设计。实验表明,自主无人机能够在未知环境中,自主实现同时定位和地图构建任务并完成精确的飞行控制与导航。 展开更多
关键词 视觉同时定位于地图构建 自主无人机 ROS 视觉定位 位姿图优化 自主导航
在线阅读 下载PDF
基于深度学习的室内动态场景下的VSLAM 方法 被引量:11
12
作者 徐晓苏 安仲帅 《中国惯性技术学报》 EI CSCD 北大核心 2020年第4期480-486,共7页
当前应用于室内的视觉同时定位和地图构建算法(VSLAM)主要面向静态的环境,算法的定位精度和稳定性会大大受到环境中运动物体的影响。针对这一问题,提出了一种面向室内的动态场景下的VSLAM方法。在ORB-SLAM2架构上进行改进。在相机捕捉... 当前应用于室内的视觉同时定位和地图构建算法(VSLAM)主要面向静态的环境,算法的定位精度和稳定性会大大受到环境中运动物体的影响。针对这一问题,提出了一种面向室内的动态场景下的VSLAM方法。在ORB-SLAM2架构上进行改进。在相机捕捉图像后,首先利用GCNv2神经网络对图像提取出特征,同时利用轻量级的ESPNetV2神经网络对图像完成语义分割。然后,结合改进的移动一致性检测来确定动态物体,剔除其动态特征获得其静态特征点来完成位姿估计,最终生成含有语义信息的点云地图和八叉树地图。采用TUM数据集验证所提出算法,实验结果表明在高动态场景下绝对轨迹误差的均方根误差平均减少95%,显著提升了在动态场景下的定位精度。 展开更多
关键词 视觉同时定位和地图构建算法 动态场景 深度学习 语义分割 特征提取
在线阅读 下载PDF
基于快速视觉里程计和大回环局部优化模型的改进VSLAM算法 被引量:15
13
作者 李永锋 张国良 +2 位作者 王蜂 汤文俊 姚二亮 《机器人》 EI CSCD 北大核心 2015年第5期557-565,共9页
从提高移动机器人视觉同时定位与地图创建(visual simultaneous localization and mapping,VSLAM)过程中的自主定位精度和实时性的角度出发,提出了一种基于快速视觉里程计和大回环局部优化模型的改进VSLAM算法.首先,在对特征点进行不确... 从提高移动机器人视觉同时定位与地图创建(visual simultaneous localization and mapping,VSLAM)过程中的自主定位精度和实时性的角度出发,提出了一种基于快速视觉里程计和大回环局部优化模型的改进VSLAM算法.首先,在对特征点进行不确定性分析的基础上,对color GICP(color supported generalized iterative closest point)误差函数进行改进,采用帧到模型(frame-to-model)方式实现对数据集和模型集的快速配准,并结合卡尔曼滤波和加权方法实现对模型集的更新,提高位姿估计精度;其次,提出一种基于模型到模型(model-tomodel)配准的大回环局部优化模型,并结合g2o图优化方法对位姿估计累积误差进行快速局部优化,从而进一步提高自主定位精度和效率.数据集离线对比实验和实际场景在线实验均表明,本文方法不但有效提高了移动机器人VSLAM过程中的自主定位和建图精度,而且具有较好的实时性. 展开更多
关键词 同步定位与地图创建 视觉里程计 COLOR GICP(color SUPPORTED generalized ITERATIVE closest point) 卡尔曼滤波 g2o(generN graph optimization)
原文传递
vSLAM在无人机平台上的发展研究综述 被引量:5
14
作者 王冠政 汪海洋 +3 位作者 程志伟 万紫嫣 文雪 何建华 《计算机工程与应用》 CSCD 北大核心 2019年第14期8-14,共7页
vSLAM(visual Simultaneous Localization and Mapping)是一种基于视觉传感器实现同时定位与建图的技术,不仅可为地面机器人提供服务,同时在无人机的定位导航中也有着非常重要的应用。对基于无人机的vSLAM发展概况进行整理研究,就其中... vSLAM(visual Simultaneous Localization and Mapping)是一种基于视觉传感器实现同时定位与建图的技术,不仅可为地面机器人提供服务,同时在无人机的定位导航中也有着非常重要的应用。对基于无人机的vSLAM发展概况进行整理研究,就其中几大关键方向的研究现状予以介绍,主要包括结合IMU、结合光流传感器的vSLAM,同时总结目前研究中仍存在的一些问题和不足之处。结合经典理论与最新研究动态,对基于无人机的vSLAM重点研究内容和未来发展方向提出了新的展望。 展开更多
关键词 基于视觉的同时定位与建图技术(vslam) 无人机 传感器融合
在线阅读 下载PDF
基于多机器人的协同VSLAM综述 被引量:2
15
作者 王曦杨 陈炜峰 +3 位作者 尚光涛 周铖君 李振雄 徐崇辉 《南京信息工程大学学报》 CAS 北大核心 2024年第6期846-869,共24页
大规模环境建图时,使用轻便的机器人群去感知环境,采用多机器人协同SLAM(同步定位与地图构建)方案,可以解决在单个机器人SLAM方案下面临的个体成本高昂、全局误差累积、计算量大和风险过于集中的问题,有着极强的鲁棒性与稳定性.本文回... 大规模环境建图时,使用轻便的机器人群去感知环境,采用多机器人协同SLAM(同步定位与地图构建)方案,可以解决在单个机器人SLAM方案下面临的个体成本高昂、全局误差累积、计算量大和风险过于集中的问题,有着极强的鲁棒性与稳定性.本文回顾了多机器人协同SLAM的发展历史,介绍了相关的融合算法与融合架构,并从机器学习分类的角度梳理了现有的协同SLAM算法;同时还介绍了未来多机器人SLAM发展的重要方向:深度学习、语义地图与多机器人VSLAM的结合问题,并对未来发展侙作出了展望. 展开更多
关键词 同时定位与地图构建 视觉SLAM 多机器人SLAM 移动机器人 多源数据融合 语义
在线阅读 下载PDF
用于VSLAM系统的CNN在FPGA平台上的加速 被引量:1
16
作者 郁媛 李沛君 +2 位作者 王光奇 张德兵 张春 《计算机工程与设计》 北大核心 2024年第1期71-78,共8页
为实现视觉同步定位与建图系统中卷积神经网络在FPGA上的加速,基于SuperPoint模型设计一种低功耗高效CNN加速器及相应的SoC系统。采用循环分块、数据复用、计算单元展开和双缓冲策略充分利用加速器的片上资源;为提高突发传输效率,预先... 为实现视觉同步定位与建图系统中卷积神经网络在FPGA上的加速,基于SuperPoint模型设计一种低功耗高效CNN加速器及相应的SoC系统。采用循环分块、数据复用、计算单元展开和双缓冲策略充分利用加速器的片上资源;为提高突发传输效率,预先对权重参数重排;提出Pack模块和Unpack模块,设计多通道数据传输,用于提高传输带宽。在Ultra96-V2 FPGA平台上部署整个SoC系统,在仅3 W左右的功耗下实现25.63 GOPS的吞吐量,其BRAM效率、DSP效率、性能密度和功耗效率相比之前的文献有明显优势。 展开更多
关键词 同步定位与建图系统 图像处理 卷积加速 数据复用 并行计算 突发传输 软硬件协作
在线阅读 下载PDF
一种自适应特征地图匹配的改进VSLAM算法 被引量:13
17
作者 张峻宁 苏群星 +2 位作者 刘鹏远 朱庆 张凯 《自动化学报》 EI CSCD 北大核心 2019年第3期553-565,共13页
从提高机器人视觉同时定位与地图构建(Visual simultaneous localization and mapping, VSLAM)算法的实时性出发,在VSLAM的视觉里程计中提出一种自适应特征地图配准的算法.首先,针对视觉里程计中特征地图信息冗余、耗费计算资源的问题,... 从提高机器人视觉同时定位与地图构建(Visual simultaneous localization and mapping, VSLAM)算法的实时性出发,在VSLAM的视觉里程计中提出一种自适应特征地图配准的算法.首先,针对视觉里程计中特征地图信息冗余、耗费计算资源的问题,划分特征地图子区域并作为结构单元,再根据角点响应强度指标大小提取子区域中少数高效的特征点,以较小规模的特征地图配准各帧:针对自适应地图配准时匹配个数不满足的情况,提出一种区域特征点补充和特征地图扩建的方法,快速实现该情形下当前帧的再次匹配:为了提高视觉里程计中位姿估计的精度,提出一种帧到帧、帧到模型的g2o (General graph optimization)特征地图优化模型,更加有效地更新特征地图的内点和外点.通用数据集的实验表明,所提方法的定位精度误差在厘米级,生成的点云地图清晰、漂移少,相比于其他算法,具有更好的实时性、定位精度以及建图能力. 展开更多
关键词 同时定位与地图构建 视觉里程计 角点响应 区域特征补充 地图扩建 g2o
在线阅读 下载PDF
An RGB-D Camera Based Visual Positioning System for Assistive Navigation by a Robotic Navigation Aid 被引量:7
18
作者 He Zhang Lingqiu Jin Cang Ye 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第8期1389-1400,共12页
There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can ... There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces. 展开更多
关键词 Assistive navigation pose estimation robotic navigation aid(RNA) simultaneous localization and mapping visual-inertial odometry visual positioning system(VPS)
在线阅读 下载PDF
Bearing-only Visual SLAM for Small Unmanned Aerial Vehicles in GPS-denied Environments 被引量:7
19
作者 Chao-Lei Wang Tian-Miao Wang +2 位作者 Jian-Hong Liang Yi-Cheng Zhang Yi Zhou 《International Journal of Automation and computing》 EI CSCD 2013年第5期387-396,共10页
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati... This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments. 展开更多
关键词 visual simultaneous localization and mapping(SLAM) bearing-only observation inertial measurement unit small unmanned aerial vehicles(UAVs) GPS-denied environment
原文传递
Large-scale 3D Semantic Mapping Using Stereo Vision 被引量:1
20
作者 Yi Yang Fan Qiu +3 位作者 Hao Li Lu Zhang Mei-Ling Wang Meng-Yin Fu 《International Journal of Automation and computing》 EI CSCD 2018年第2期194-206,共13页
In recent years, there have been a lot of interests in incorporating semantics into simultaneous localization and mapping (SLAM) systems. This paper presents an approach to generate an outdoor large-scale 3D dense s... In recent years, there have been a lot of interests in incorporating semantics into simultaneous localization and mapping (SLAM) systems. This paper presents an approach to generate an outdoor large-scale 3D dense semantic map based on binocular stereo vision. The inputs to system are stereo color images from a moving vehicle. First, dense 3D space around the vehicle is constructed, and tile motion of camera is estimated by visual odometry. Meanwhile, semantic segmentation is performed through the deep learning technology online, and the semantic labels are also used to verify tim feature matching in visual odometry. These three processes calculate the motion, depth and semantic label of every pixel in the input views. Then, a voxel conditional random field (CRF) inference is introduced to fuse semantic labels to voxel. After that, we present a method to remove the moving objects by incorporating the semantic labels, which improves the motion segmentation accuracy. The last is to generate tile dense 3D semantic map of an urban environment from arbitrary long image sequence. We evaluate our approach on KITTI vision benchmark, and the results show that the proposed method is effective. 展开更多
关键词 Semantic map stereo vision motion segmentation visual odometry simultaneous localization and mapping (SLAM).
原文传递
上一页 1 2 12 下一页 到第
使用帮助 返回顶部