期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
DKP-SLAM:A Visual SLAM for Dynamic Indoor Scenes Based on Object Detection and Region Probability
1
作者 Menglin Yin Yong Qin Jiansheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期1329-1347,共19页
In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper prese... In dynamic scenarios,visual simultaneous localization and mapping(SLAM)algorithms often incorrectly incorporate dynamic points during camera pose computation,leading to reduced accuracy and robustness.This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability.Firstly,a parallel thread employs the YOLOX object detectionmodel to gather 2D semantic information and compensate for missed detections.Next,an improved K-means++clustering algorithm clusters bounding box regions,adaptively determining the threshold for extracting dynamic object contours as dynamic points change.This process divides the image into low dynamic,suspicious dynamic,and high dynamic regions.In the tracking thread,the dynamic point removal module assigns dynamic probability weights to the feature points in these regions.Combined with geometric methods,it detects and removes the dynamic points.The final evaluation on the public TUM RGB-D dataset shows that the proposed dynamic SLAM algorithm surpasses most existing SLAM algorithms,providing better pose estimation accuracy and robustness in dynamic environments. 展开更多
关键词 visual slam dynamic scene YOLOX K-means++clustering dynamic probability
在线阅读 下载PDF
YGC-SLAM:A visual SLAM based on improved YOLOv5 and geometric constraints for dynamic indoor environments
2
作者 Juncheng ZHANG Fuyang KE +2 位作者 Qinqin TANG Wenming YU Ming ZHANG 《虚拟现实与智能硬件(中英文)》 2025年第1期62-82,共21页
Background As visual simultaneous localization and mapping(SLAM)is primarily based on the assumption of a static scene,the presence of dynamic objects in the frame causes problems such as a deterioration of system rob... Background As visual simultaneous localization and mapping(SLAM)is primarily based on the assumption of a static scene,the presence of dynamic objects in the frame causes problems such as a deterioration of system robustness and inaccurate position estimation.In this study,we propose a YGC-SLAM for indoor dynamic environments based on the ORB-SLAM2 framework combined with semantic and geometric constraints to improve the positioning accuracy and robustness of the system.Methods First,the recognition accuracy of YOLOv5 was improved by introducing the convolution block attention model and the improved EIOU loss function,whereby the prediction frame converges quickly for better detection.The improved YOLOv5 was then added to the tracking thread for dynamic target detection to eliminate dynamic points.Subsequently,multi-view geometric constraints were used for re-judging to further eliminate dynamic points while enabling more useful feature points to be retained and preventing the semantic approach from over-eliminating feature points,causing a failure of map building.The K-means clustering algorithm was used to accelerate this process and quickly calculate and determine the motion state of each cluster of pixel points.Finally,a strategy for drawing keyframes with de-redundancy was implemented to construct a clear 3D dense static point-cloud map.Results Through testing on TUM dataset and a real environment,the experimental results show that our algorithm reduces the absolute trajectory error by 98.22%and the relative trajectory error by 97.98%compared with the original ORBSLAM2,which is more accurate and has better real-time performance than similar algorithms,such as DynaSLAM and DS-SLAM.Conclusions The YGC-SLAM proposed in this study can effectively eliminate the adverse effects of dynamic objects,and the system can better complete positioning and map building tasks in complex environments. 展开更多
关键词 visual slam Dynamic slam Target detection Geometric constraints
在线阅读 下载PDF
PPS-SLAM: Dynamic Visual SLAM with a Precise Pruning Strategy
3
作者 Jiansheng Peng Wei Qian Hongyu Zhang 《Computers, Materials & Continua》 2025年第2期2849-2868,共20页
Dynamic visual SLAM (Simultaneous Localization and Mapping) is an important research area, but existing methods struggle to balance real-time performance and accuracy in removing dynamic feature points, especially whe... Dynamic visual SLAM (Simultaneous Localization and Mapping) is an important research area, but existing methods struggle to balance real-time performance and accuracy in removing dynamic feature points, especially when semantic information is missing. This paper presents a novel dynamic SLAM system that uses optical flow tracking and epipolar geometry to identify dynamic feature points and applies a regional dynamic probability method to improve removal accuracy. We developed two innovative algorithms for precise pruning of dynamic regions: first, using optical flow and epipolar geometry to identify and prune dynamic areas while preserving static regions on stationary dynamic objects to optimize tracking performance;second, propagating dynamic probabilities across frames to mitigate the impact of semantic information loss in some frames. Experiments show that our system significantly reduces trajectory and pose errors in dynamic scenes, achieving dynamic feature point removal accuracy close to that of semantic segmentation methods, while maintaining high real-time performance. Our system performs exceptionally well in highly dynamic environments, especially where complex dynamic objects are present, demonstrating its advantage in handling dynamic scenarios. The experiments also show that while traditional methods may fail in tracking when semantic information is lost, our approach effectively reduces the misidentification of dynamic regions caused by such loss, thus improving system robustness and accuracy. 展开更多
关键词 visual slam dynamic slam YOLOv8
在线阅读 下载PDF
Visual SLAM in dynamic environments based on object detection 被引量:9
4
作者 Yong-bao Ai Ting Rui +4 位作者 Xiao-qiang Yang Jia-lin He Lei Fu Jian-bin Li Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1712-1721,共10页
A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on... A great number of visual simultaneous localization and mapping(VSLAM)systems need to assume static features in the environment.However,moving objects can vastly impair the performance of a VSLAM system which relies on the static-world assumption.To cope with this challenging topic,a real-time and robust VSLAM system based on ORB-SLAM2 for dynamic environments was proposed.To reduce the influence of dynamic content,we incorporate the deep-learning-based object detection method in the visual odometry,then the dynamic object probability model is added to raise the efficiency of object detection deep neural network and enhance the real-time performance of our system.Experiment with both on the TUM and KITTI benchmark dataset,as well as in a real-world environment,the results clarify that our method can significantly reduce the tracking error or drift,enhance the robustness,accuracy and stability of the VSLAM system in dynamic scenes. 展开更多
关键词 visual slam Object detection Dynamic object probability model Dynamic environments
在线阅读 下载PDF
Visual SLAM Based on Object Detection Network:A Review 被引量:2
5
作者 Jiansheng Peng Dunhua Chen +3 位作者 Qing Yang Chengjun Yang Yong Xu Yong Qin 《Computers, Materials & Continua》 SCIE EI 2023年第12期3209-3236,共28页
Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed ... Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed semantic SLAM,which combines object detection,semantic segmentation,instance segmentation,and visual SLAM.Despite the growing body of literature on semantic SLAM,there is currently a lack of comprehensive research on the integration of object detection and visual SLAM.Therefore,this study aims to gather information from multiple databases and review relevant literature using specific keywords.It focuses on visual SLAM based on object detection,covering different aspects.Firstly,it discusses the current research status and challenges in this field,highlighting methods for incorporating semantic information from object detection networks into mileage measurement,closed-loop detection,and map construction.It also compares the characteristics and performance of various visual SLAM object detection algorithms.Lastly,it provides an outlook on future research directions and emerging trends in visual SLAM.Research has shown that visual SLAM based on object detection has significant improvements compared to traditional SLAM in dynamic point removal,data association,point cloud segmentation,and other technologies.It can improve the robustness and accuracy of the entire SLAM system and can run in real time.With the continuous optimization of algorithms and the improvement of hardware level,object visual SLAM has great potential for development. 展开更多
关键词 Object detection visual slam visual odometry loop closure detection semantic map
在线阅读 下载PDF
Collaborative visual SLAM for multiple agents:A brief survey 被引量:5
6
作者 Danping ZOU Ping TAN Wenxian YU 《Virtual Reality & Intelligent Hardware》 2019年第5期461-482,共22页
This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holdin... This article presents a brief survey to visual simultaneous localization and mapping (SLAM) systems applied to multiple independently moving agents, such as a team of ground or aerial vehicles, a group of users holding augmented or virtual reality devices. Such visual SLAM system, name as collaborative visual SLAM, is different from a typical visual SLAM deployed on a single agent in that information is exchanged or shared among different agents to achieve better robustness, efficiency, and accuracy. We review the representative works on this topic proposed in the past ten years and describe the key components involved in designing such a system including collaborative pose estimation and mapping tasks, as well as the emerging topic of decentralized architecture. We believe this brief survey could be helpful to someone who are working on this topic or developing multi-agent applications, particularly micro-aerial vehicle swarm or collaborative augmented/virtual reality. 展开更多
关键词 visual slam Multiple agent UAV swarm Collaborative AR/VR
在线阅读 下载PDF
Motion estimation based feature selection for visual SLAM
7
作者 孟旭炯 Jiang Rongxin Zhou Fan Chen Yaowu 《High Technology Letters》 EI CAS 2011年第4期433-438,共6页
Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of vi... Feature selection is always an important issue in the visual SLAM (simultaneous location and mapping) literature. Considering that the location estimation can be improved by tracking features with larger value of visible time, a new feature selection method based on motion estimation is proposed. First, a k-step iteration algorithm is presented for visible time estimation using an affme motion model; then a delayed feature detection method is introduced for efficiently detecting features with the maximum visible time. As a means of validation for the proposed method, both simulation and real data experiments are carded out. Results show that the proposed method can improve both the estimation performance and the computational performance compared with the existing random feature selection method. 展开更多
关键词 visual slam feature selection motion estimation computational efficiency CONSISTENCY extended Kalman filter (EKF)
在线阅读 下载PDF
Bearing-only Visual SLAM for Small Unmanned Aerial Vehicles in GPS-denied Environments 被引量:7
8
作者 Chao-Lei Wang Tian-Miao Wang +2 位作者 Jian-Hong Liang Yi-Cheng Zhang Yi Zhou 《International Journal of Automation and computing》 EI CSCD 2013年第5期387-396,共10页
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati... This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments. 展开更多
关键词 visual simultaneous localization and mapping(slam bearing-only observation inertial measurement unit small unmanned aerial vehicles(UAVs) GPS-denied environment
原文传递
Adaptive Motion-State Estimation and Feature Reuse for Intermittent Dynamics in Visual SLAM
9
作者 Mengyuan HE Chao ZENG +1 位作者 Ning WANG Chenguang YANG 《Artificial Intelligence Science and Engineering》 2025年第4期278-293,共16页
In dynamic scenes,the pose estimation and map consistency of visual simultaneous localisation and mapping(visual SLAM)are affected by intermittent changes in object motion states.An adaptive motion-state estimation an... In dynamic scenes,the pose estimation and map consistency of visual simultaneous localisation and mapping(visual SLAM)are affected by intermittent changes in object motion states.An adaptive motion-state estimation and feature-reuse mechanism is proposed which restores features once objects become stationary.Camera ego-motion is com-pensated via projection-based point-to-point red-green-blue-depth(RGB-D)Iterative Closest Point;the alignment residual yields a short-term jitter score.An Extended Kalman Filter fuses the centre-pixel trajectory and depth of the object,using depth innovation as strong evidence to suppress false triggers.Applied adaptive decision thresholds involve resolution,ego-motion intensity,jitter,and reference depth,and are combined with dual/single triggering and hysteresis to achieve robust switching.When an object is considered static,its feature points are reused.On the Bonn RGB-D Dynamic Dataset(BONN)and TUM RGB-D SLAM Dataset and Benchmark(TUM),the proposed method matches or exceeds baselines:In intermittent-motion-dominated BONN sequences Placing_non_box,it re-duces the root-mean-square of the absolute trajectory error(ATE-RMSE)by 27%relative to the baseline,remains comparable to Ellipsoid-SLAM on TUM,and consistently outperforms ORB-SLAM3 in dynamic scenes.The hysteresis counter reading on Placing_non_box2 shows that the proposed method can reduce the motion-state misclassification rate by nearly 40%.From the ablation experiment results,we confirm that adaptive thresholds yield the most significant optimisation effect.The approach improves robustness and map completeness in dynamic environments without degrading performance in low-dynamic settings. 展开更多
关键词 visual slam dynamic scenes intermittent motion motion-state estimation feature reuse
在线阅读 下载PDF
动态场景下基于跨域掩膜分割的视觉SLAM算法
10
作者 亢洁 徐婷 +4 位作者 王佳乐 郭进 赫轩 王沫 夏宇 《陕西科技大学学报》 北大核心 2026年第1期178-185,193,共9页
针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减... 针对动态场景下视觉SLAM(Simultaneous Localization and Mapping)系统中深度学习分割网络实时性不足,以及相机非期望运动导致位姿估计偏差的问题,提出一种基于跨域掩膜分割的视觉SLAM算法.该算法采用轻量化YOLO-fastest网络结合背景减除法实现运动物体检测,利用深度图结合深度阈值分割构建跨域掩膜分割机制,并设计相机运动几何校正策略补偿检测框坐标误差,在实现运动物体分割的同时提升处理速度.为优化特征点利用率,采用金字塔光流对动态特征点进行帧间连续跟踪与更新,同时确保仅由静态特征点参与位姿估计过程.在TUM数据集上进行系统性评估,实验结果表明,相比于ORB-SLAM3算法,该算法的绝对位姿误差平均降幅达97.1%,与使用深度学习分割网络的DynaSLAM和DS-SLAM的动态SLAM算法相比,其单帧跟踪时间大幅减少,在精度与效率之间实现了更好的平衡. 展开更多
关键词 视觉slam 动态场景 YOLO-Fastest 金字塔光流 深度阈值分割
在线阅读 下载PDF
Composite-mask GAN based on refined optical flow and disparity map for SLAM visual odometry
11
作者 JI Yuehui JIANG Jingwei +2 位作者 LIU Junjie SONG Yu GAO Qiang 《Optoelectronics Letters》 2025年第12期730-736,共7页
Although deep learning methods have been widely applied in slam visual odometry(VO)over the past decade with impressive improvements,the accuracy remains limited in complex dynamic environments.In this paper,a composi... Although deep learning methods have been widely applied in slam visual odometry(VO)over the past decade with impressive improvements,the accuracy remains limited in complex dynamic environments.In this paper,a composite mask-based generative adversarial network(CMGAN)is introduced to predict camera motion and binocular depth maps.Specifically,a perceptual generator is constructed to obtain the corresponding parallax map and optical flow between two neighboring frames.Then,an iterative pose improvement strategy is proposed to improve the accuracy of pose estimation.Finally,a composite mask is embedded in the discriminator to sense structural deformation in the synthesized virtual image,thereby increasing the overall structural constraints of the network model,improving the accuracy of camera pose estimation,and reducing drift issues in the VO.Detailed quantitative and qualitative evaluations on the KITTI dataset show that the proposed framework outperforms existing conventional,supervised learning and unsupervised depth VO methods,providing better results in both pose estimation and depth estimation. 展开更多
关键词 parallax map predict camera motion binocular depth mapsspecificallya slam visual odometry vo complex dynamic environmentsin deep learning methods generative adversarial network perceptual generator iterative pose improvement strateg
原文传递
Deep Learning for Visual SLAM in Transportation Robotics:A review 被引量:5
12
作者 Chao Duan Steffen Junginger +2 位作者 Jiahao Huang Kairong Jin Kerstin Thurow 《Transportation Safety and Environment》 EI 2019年第3期177-184,共8页
Visual SLAM(Simultaneously Localization and Mapping)is a solution to achieve localization and mapping of robots simultaneously.Significant achievements have been made during the past decades,geography-based methods ar... Visual SLAM(Simultaneously Localization and Mapping)is a solution to achieve localization and mapping of robots simultaneously.Significant achievements have been made during the past decades,geography-based methods are becoming more and more successful in dealing with static environments.However,they still cannot handle a challenging environment.With the great achievements of deep learning methods in the field of computer vision,there is a trend of applying deep learning methods to visual SLAM.In this paper,the latest research progress of deep learning applied to the field of visual SLAM is reviewed.The outstanding research results of deep learning visual odometry and deep learning loop closure detect are summarized.Finally,future development directions of visual SLAM based on deep learning is prospected. 展开更多
关键词 deep learning visual slam transportation robotics mobile robots
在线阅读 下载PDF
基于ORB-SLAM3视觉与惯导融合的煤矿机器人定位算法研究 被引量:3
13
作者 陈伟 巫帅达 +2 位作者 田子建 张帆 刘毅 《煤炭科学技术》 北大核心 2025年第S1期297-307,共11页
针对煤矿井下空间狭窄、光线昏暗且严重不均匀使矿井图像存在照度低、纹理稀疏、颜色失真等缺陷,严重影响了视觉SLAM特征点提取匹配结果,导致定位性能急剧下降,提出1种基于改进ORB-SLAM3算法的煤矿移动机器人单目视觉定位算法。首先对OR... 针对煤矿井下空间狭窄、光线昏暗且严重不均匀使矿井图像存在照度低、纹理稀疏、颜色失真等缺陷,严重影响了视觉SLAM特征点提取匹配结果,导致定位性能急剧下降,提出1种基于改进ORB-SLAM3算法的煤矿移动机器人单目视觉定位算法。首先对ORB-SLAM3定位算法进行改进,在前端特征点提取(ORB)算法的基础上引入了直方图均衡化、非极大值抑制法、自适应阈值法以及基于四叉树策略的特征点均匀化性质;然后在特征点匹配工作中,引入了基于图像金字塔的LK光流法,减少优化的迭代次数,在特征点匹配完成后加入RANSAC算法去除误匹配的特征点,提高特征点的匹配准确率。在后端通过三角测量的方法,得到像素的深度信息,将2D-2D位姿求解问题转化成3D-2D(pnp)位姿求解问题。根据视觉惯导紧耦合的原理,通过融合视觉残差和IMU残差构建整个定位系统的残差函数,并使用基于非线性优化的滑动窗口BA算法不断迭代优化残差函数,获取精确的移动机器人位姿估计。将改进后的算法在4个数据集下与ORB-SLAM3算法以及VINSMono算法进行了充分的对比实验。研究表明:(1)相比于ORB-SLAM3算法以及VINS-Mono算法,提出定位系统的运动轨迹和真值轨迹最接近;(2)提出定位系统的APE各项指标均优于ORB-SLAM3算法以及VINS-Mono算法;(3)提出定位系统均方根误差为0.049 m(4次实验平均值),相较于ORBSLAM3均方根误差降低了31.1%(四次实验平均值)。 展开更多
关键词 单目视觉 惯性导航 移动机器人 视觉slam(即时定位与地图构建)定位 LK光流法
在线阅读 下载PDF
边缘感知增强的煤矿井下视觉SLAM方法 被引量:2
14
作者 牟琦 梁鑫 +2 位作者 郭媛婕 王煜豪 李占利 《煤田地质与勘探》 北大核心 2025年第3期231-242,共12页
【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘... 【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘感知增强的视觉SLAM方法。首先,构建了边缘感知约束的低光图像增强模块。通过自适应尺度的梯度域引导滤波器优化Retinex算法,以获得纹理清晰光照均匀的图像,从而显著提升了在低光照和不均匀光照条件下特征提取性能。其次,在视觉里程计中构建了边缘感知增强的特征提取和匹配模块,通过点线特征融合策略有效增强了弱纹理和结构化场景中特征的可检测性和匹配准确性。具体使用边缘绘制线特征提取算法(edge drawing lines,EDLines)提取线特征,定向FAST和旋转BRIEF点特征提取算法(oriented fast and rotated brief,ORB)提取点特征,并利用基于网格运动统计(grid-based motion statistics,GMS)和比值测试匹配算法进行精确匹配。最后,将该方法与ORB-SLAM2、ORB-SLAM3在TUM数据集和煤矿井下实景数据集上进行了全面实验验证,涵盖图像增强、特征匹配和定位等多个环节。【结果和结论】结果表明:(1)在TUM数据集上的测试结果显示,所提方法与ORB-SLAM2相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了4%~38.46%、8.62%~50%;与ORB-SLAM3相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了0~61.68%、3.63%~47.05%。(2)在煤矿井下实景实验中,所提方法的定位轨迹更接近于相机运动参考轨迹。(3)有效提高了视觉SLAM在煤矿井下特征退化场景中的准确性和鲁棒性,为视觉SLAM技术在煤矿井下的应用提供了技术解决方案。研究面向井下特征退化场景的视觉SLAM方法,对于推动煤矿井下移动式装备机器人化具有重要意义。 展开更多
关键词 视觉slam 特征退化 边缘感知 图像增强 点线特征融合 TUM数据集
在线阅读 下载PDF
基于点线特征的煤矿井下机器人视觉SLAM算法 被引量:4
15
作者 王莉 臧天祥 苏波 《煤炭科学技术》 北大核心 2025年第5期325-337,共13页
煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast... 煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。 展开更多
关键词 井下机器人 视觉slam 双目视觉 SuperPoint特征 LSD线特征
在线阅读 下载PDF
基于DR-DT的视觉SLAM参数自适应调整
16
作者 黄鑫 黄初华 +2 位作者 杨明旭 秦进 马旭博 《计算机应用研究》 北大核心 2025年第11期3512-3520,共9页
针对传统视觉SLAM系统依赖固定参数且需手动调整的问题,提出了一种基于离散化奖励Decision Transformer的自适应参数调整方法——DR-DT。该方法将参数自适应过程转换为序列建模任务,通过选择SLAM关键参数定义连续动作空间,基于位姿不确... 针对传统视觉SLAM系统依赖固定参数且需手动调整的问题,提出了一种基于离散化奖励Decision Transformer的自适应参数调整方法——DR-DT。该方法将参数自适应过程转换为序列建模任务,通过选择SLAM关键参数定义连续动作空间,基于位姿不确定性构建奖励函数,结合离散化奖励机制提升学习稳定性。以ORB-SLAM3为测试系统,在EuRoC MAV和TUM-VI数据集上的实验结果表明,所提方法能有效提升视觉SLAM系统在复杂场景中的位姿估计精度,同时简化了参数调整过程。该方法为视觉SLAM系统的参数自适应优化提供了新思路。 展开更多
关键词 视觉slam 参数自适应 Decision Transformer 连续动作空间 离散化奖励
在线阅读 下载PDF
面向复杂光照场景的异质SLAM融合方法
17
作者 孙荣川 高水镕 +2 位作者 张鑫 郁树梅 孙立宁 《机器人》 北大核心 2025年第4期508-516,共9页
针对低光照、弱纹理等复杂光照环境中同步定位与地图构建(SLAM)面临的闭环检测失败和机器人轨迹精度低的问题,将传统视觉SLAM方法的高精度地图构建和精确定位能力与仿生SLAM方法在复杂光照环境下的强场景识别能力相结合,提出了一种基于... 针对低光照、弱纹理等复杂光照环境中同步定位与地图构建(SLAM)面临的闭环检测失败和机器人轨迹精度低的问题,将传统视觉SLAM方法的高精度地图构建和精确定位能力与仿生SLAM方法在复杂光照环境下的强场景识别能力相结合,提出了一种基于模糊神经网络的异质SLAM融合方法,包括基于标准型模糊神经网络的闭环决策方法以提升复杂光照场景下闭环检测的成功率,以及基于T-S(Takagi-Sugeno)模糊神经网络的轨迹优化方法以提升机器人轨迹估计的精准性,从而实现在复杂光照环境中更准确的定位和更可靠的环境建模。实验结果表明,相较于ORB-SLAM2和RatSLAM方法,提出的异质SLAM融合方法在自采集数据集和公开数据集上能获得更高的闭环检测召回率和更低的绝对轨迹误差(ATE),在复杂场景下展现出较强的鲁棒性,对提升复杂光照场景下机器人自主作业的精准性及稳定导航定位能力具有积极意义。 展开更多
关键词 视觉slam(同步定位与地图构建) 仿生slam 模糊神经网络 多模态数据融合
原文传递
交叉注意力驱动的室外双目视觉SLAM稠密建图算法研究
18
作者 王立勇 刘毅政 +2 位作者 苏清华 宋越 谢智昊 《重庆理工大学学报(自然科学)》 北大核心 2025年第9期38-44,共7页
传统视觉SLAM算法依赖稀疏重建,难以满足自主导航与避障对高精度环境感知的需求。提出一种在传统ORB-SLAM3框架上集成交叉注意力机制的立体匹配稠密建图模型,实现室外稠密地图构建。该模型输出视差图生成彩色深度点云,实现高精度三维稠... 传统视觉SLAM算法依赖稀疏重建,难以满足自主导航与避障对高精度环境感知的需求。提出一种在传统ORB-SLAM3框架上集成交叉注意力机制的立体匹配稠密建图模型,实现室外稠密地图构建。该模型输出视差图生成彩色深度点云,实现高精度三维稠密地图构建,满足自主导航与避障需求。实验结果表明,该算法在KITTI数据集与实车实验室外环境中90%以上的稠密点云误差在0.5 m以内,具有较高的建图精度,可解决传统视觉SLAM系统存在的环境信息不足的问题。 展开更多
关键词 双目视觉slam 立体匹配 稠密建图 三维重建
在线阅读 下载PDF
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
19
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 visual slam dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
基于多特征信息定位的机器人视觉SLAM算法
20
作者 范启亮 丁度坤 《测绘通报》 北大核心 2025年第4期14-19,26,共7页
视觉即时定位与地图构建(SLAM)算法在室内服务机器人中被广泛应用,但基于点云、平面和语义的视觉SLAM算法存在地图构建单一、定位不准等问题。本文基于经典ORB-SLAM2算法,引入平面和语义信息,提出基于多特征信息定位的视觉SLAM算法(MFIL... 视觉即时定位与地图构建(SLAM)算法在室内服务机器人中被广泛应用,但基于点云、平面和语义的视觉SLAM算法存在地图构建单一、定位不准等问题。本文基于经典ORB-SLAM2算法,引入平面和语义信息,提出基于多特征信息定位的视觉SLAM算法(MFIL-SLAM)。该算法通过从视觉和深度图像中提取特征点、平面和语义信息,与地图中的相应路标关联,更新相机位姿,并通过因子图优化多层级地图。试验结果表明,本文算法在建图效果、定位精度和稳健性方面均优于现有算法。 展开更多
关键词 多特征信息 视觉slam 数据关联 因子图优化
原文传递
上一页 1 2 21 下一页 到第
使用帮助 返回顶部