In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared...In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared imagery into a single output to enhance visual perception. The proposed framework is computationally simple since it is only realized in the spatial domain. The core idea is to obtain an initial fused image by averaging all the source images. The initial fused image is then enhanced by selecting the most salient features guided from the root mean square error(RMSE) and fractal dimension of the visual and infrared images to obtain the final fused image.Extensive experiments on different scene imaginary demonstrate that it is consistently superior to the conventional image fusion methods in terms of visual and quantitative evaluations.展开更多
The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to impr...The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to improve visual information of the vehicle driver in low visibility conditions is put forward based on infrared and visible image fusion technique.The wavelet image confusion algorithm is adopted to decompose the image into low-frequency approximation components and high-frequency detail components.Low-frequency component contains information representing gray value differences.High-frequency component contains the detail information of the image,which is frequently represented by gray standard deviation to assess image quality.To extract feature information of low-frequency component and high-frequency component with different emphases,different fusion operators are used separately by low-frequency and high-frequency components.In the processing of low-frequency component,the fusion rule of weighted regional energy proportion is adopted to improve the brightness of the image,and the fusion rule of weighted regional proportion of standard deviation is used in all the three high-frequency components to enhance the image contrast.The experiments on image fusion of infrared and visible light demonstrate that this image fusion method can effectively improve the image brightness and contrast,and it is suitable for vision enhancement of the low-visibility images.展开更多
针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,...针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,将局部特征和全局特征融合,得到混合特征的特征矩阵。通过深度学习实现对应矩阵求解中相关参数的自动优化,最后利用加权奇异值分解(singular value decomposition,SVD)得到变换矩阵,完成配准。在ModelNet40数据集上的实验表明,和最远点采样相比,所提算法耗时减少45.36%;而配准结果和基于特征学习的鲁棒点匹配(robust point matching using learned features,RPM-Net)相比,平移矩阵均方误差降低5.67%,旋转矩阵均方误差降低13.1%。在自制点云数据上的实验,证实了算法在真实物体上配准的有效性。展开更多
基金supported in part by the National Natural Science Foundation of China (61533017,U1501251)
文摘In this paper, a novel fusion framework is proposed for night-vision applications such as pedestrian recognition,vehicle navigation and surveillance. The underlying concept is to combine low-light visible and infrared imagery into a single output to enhance visual perception. The proposed framework is computationally simple since it is only realized in the spatial domain. The core idea is to obtain an initial fused image by averaging all the source images. The initial fused image is then enhanced by selecting the most salient features guided from the root mean square error(RMSE) and fractal dimension of the visual and infrared images to obtain the final fused image.Extensive experiments on different scene imaginary demonstrate that it is consistently superior to the conventional image fusion methods in terms of visual and quantitative evaluations.
基金the Science and Technology Development Program of Beijing Municipal Commission of Education (No.KM201010011002)the National College Students'Scientific Research and Entrepreneurial Action Plan(SJ201401011)
文摘The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to improve visual information of the vehicle driver in low visibility conditions is put forward based on infrared and visible image fusion technique.The wavelet image confusion algorithm is adopted to decompose the image into low-frequency approximation components and high-frequency detail components.Low-frequency component contains information representing gray value differences.High-frequency component contains the detail information of the image,which is frequently represented by gray standard deviation to assess image quality.To extract feature information of low-frequency component and high-frequency component with different emphases,different fusion operators are used separately by low-frequency and high-frequency components.In the processing of low-frequency component,the fusion rule of weighted regional energy proportion is adopted to improve the brightness of the image,and the fusion rule of weighted regional proportion of standard deviation is used in all the three high-frequency components to enhance the image contrast.The experiments on image fusion of infrared and visible light demonstrate that this image fusion method can effectively improve the image brightness and contrast,and it is suitable for vision enhancement of the low-visibility images.
文摘针对目前智能机器人领域中,利用多帧连续视觉和触觉信息时,对时空信息和模态间的异构信息处理不足的问题,提出了一种结合时空注意力的视触融合目标识别方法。该方法利用Swin Transformer模块从视觉和触觉图像中分别提取特征,减轻模态间的异构性;使用基于注意力瓶颈机制的时空Transformer模块,实现视觉和触觉特征信息的时空交互和跨模态交互;通过多头自注意力融合模块,实现视触觉特征中信息的自适应聚合,提高了算法对目标识别的准确性;通过全连接层获得目标识别的结果。该模型在The Touch and Go公共数据集上的精确率和F1分数分别为98.38%和96.83%,比效果最好的对比模型提高了0.90和0.63个百分点。此外,消融实验也验证了提出的各个模块的有效性。
文摘针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,将局部特征和全局特征融合,得到混合特征的特征矩阵。通过深度学习实现对应矩阵求解中相关参数的自动优化,最后利用加权奇异值分解(singular value decomposition,SVD)得到变换矩阵,完成配准。在ModelNet40数据集上的实验表明,和最远点采样相比,所提算法耗时减少45.36%;而配准结果和基于特征学习的鲁棒点匹配(robust point matching using learned features,RPM-Net)相比,平移矩阵均方误差降低5.67%,旋转矩阵均方误差降低13.1%。在自制点云数据上的实验,证实了算法在真实物体上配准的有效性。