The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because th...The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because that the height of wind power generator generally exceeds 100 m,and visual range in plain region is farther,it is necessary to scientifically and rationally evaluate and analyze landscape visual environment impact of wind power generator in plain region. One wind power farm project of Zhanjiang is located in typical plain region of Guangdong coast. Referring to traditional analytic method of landscape visual impact and comparing with actual situation for the same kind of project in the region,results show that it is " extremely sensitive" area at 0- 2. 5 km from wind power generator, " very sensitive" area at 2. 5- 5. 0 km, " sensitive" area at 5- 10 km, "generally sensitive" area at 10- 20 km,and non-sensitive area outside 20 km.展开更多
Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes fa...Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes factors that contribute to crash occurrence based on two national datasets in the United States (CISS and NASS-CDS) for the years 2017-2022 and 2010-2015, respectively. Three taxonomies were applied to enhance understanding of the various crash contributing factors. These taxonomies were developed based on previous research and practice and involved different groupings of human factors, vehicle factors, and roadway and environmental factors. Statistics for grouping the different types of factors and statistics for specific factors are provided. The results indicate that human factors are present in over 95% of crashes, roadway and environmental factors are present in over 45% of crashes, and vehicle factors are present in less than 2% of crashes. Regarding factors related to human error and vehicle maintenance, speeding is involved in over 25% of crashes, distraction is involved in over 20% of crashes, alcohol and drugs are involved in over 9% of crashes, and vehicle maintenance is involved in approximately 0.45% of crashes. Approximately 4.4% of crashes involve a driver who “looked but did not see.” Weather is involved in over 13% of crashes. Conclusions: The findings indicate that, consistent with previous research, human factors or human error are present in around 95% of crashes. Infrastructure and environmental factors contribute to about 45% of crashes. Vehicle factors contribute to only 1.67% - 1.71% of crashes. The results from this study could potentially be used to inform future safety management and improvement activities, including policy-making, regulation development, safe systems and systemic safety approaches to safety management, and other engineering, education, emergency response, enforcement, evaluation, and encouragement activities. The findings could also be used in the development of future Driver Assistance Technologies (DAT) systems and in enhancing existing technologies.展开更多
文摘The construction of wind power project is conducive to saving energy,reducing emissions and regulating energy structure. But it inevitably causes some impacts on the environment in the construction process. Because that the height of wind power generator generally exceeds 100 m,and visual range in plain region is farther,it is necessary to scientifically and rationally evaluate and analyze landscape visual environment impact of wind power generator in plain region. One wind power farm project of Zhanjiang is located in typical plain region of Guangdong coast. Referring to traditional analytic method of landscape visual impact and comparing with actual situation for the same kind of project in the region,results show that it is " extremely sensitive" area at 0- 2. 5 km from wind power generator, " very sensitive" area at 2. 5- 5. 0 km, " sensitive" area at 5- 10 km, "generally sensitive" area at 10- 20 km,and non-sensitive area outside 20 km.
文摘Understanding crash contributing factors is essential in safety management and improvement. These factors drive investment decisions, policies, regulations, and other safety-related initiatives. This paper analyzes factors that contribute to crash occurrence based on two national datasets in the United States (CISS and NASS-CDS) for the years 2017-2022 and 2010-2015, respectively. Three taxonomies were applied to enhance understanding of the various crash contributing factors. These taxonomies were developed based on previous research and practice and involved different groupings of human factors, vehicle factors, and roadway and environmental factors. Statistics for grouping the different types of factors and statistics for specific factors are provided. The results indicate that human factors are present in over 95% of crashes, roadway and environmental factors are present in over 45% of crashes, and vehicle factors are present in less than 2% of crashes. Regarding factors related to human error and vehicle maintenance, speeding is involved in over 25% of crashes, distraction is involved in over 20% of crashes, alcohol and drugs are involved in over 9% of crashes, and vehicle maintenance is involved in approximately 0.45% of crashes. Approximately 4.4% of crashes involve a driver who “looked but did not see.” Weather is involved in over 13% of crashes. Conclusions: The findings indicate that, consistent with previous research, human factors or human error are present in around 95% of crashes. Infrastructure and environmental factors contribute to about 45% of crashes. Vehicle factors contribute to only 1.67% - 1.71% of crashes. The results from this study could potentially be used to inform future safety management and improvement activities, including policy-making, regulation development, safe systems and systemic safety approaches to safety management, and other engineering, education, emergency response, enforcement, evaluation, and encouragement activities. The findings could also be used in the development of future Driver Assistance Technologies (DAT) systems and in enhancing existing technologies.