The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear...The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.展开更多
Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electro...Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.展开更多
Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based met...Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.展开更多
In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and ta...In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy.展开更多
Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative patho...Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns.展开更多
AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 group...AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 groups:Group A(implanted with the SN6CWS),Group B(implanted with the MI60),and Group C(implanted with the Aspira-aA).ELP measurements were obtained with swept-source optical coherence tomography(SS-OCT)at 1d,1wk,1mo,and 3mo postoperatively.Subjective refraction assessments were conducted at 1wk,1mo,and 3mo following surgery.RESULTS:The study included 189 eyes of 150 cataract patients(66 males).There were 77 eyes in Group A,55 eyes in Group B,and 57 eyes in Group C.The root mean square of the ELP(ELPRMS)within the initial 3mo was significantly lower for Group A than for Groups B and C.Refractive changes within Group A were not significant across the time points of 1wk,1mo,and 3mo.Conversely,both Group B and Group C demonstrated statistically significant shifts toward hyperopia from 1wk to 3mo postsurgery.CONCLUSION:Among the three IOLs examined,the SN6CWS IOL showes the greatest stability during the first 3mo postoperatively.Between 1wk and 3mo after surgery,notable hyperopic shifts are evident in eyes implanted with the MI60 and Aspira-aA IOLs,whereas refractive outcomes remain relatively constant in eyes implanted with SN6CWS IOLs.展开更多
Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forc...Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management.展开更多
The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg...The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.展开更多
In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural a...In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences.展开更多
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior...This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.展开更多
Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenv...Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenvatinib and everolimus represents a viable option,and the present review aimed to summarize its activity,effectiveness,and safety.Methods:A systematic review of the literature was conducted using PubMed,targeting studies published between 2018 and 2025.Eligible studies included English-language prospective and retrospective trials reporting survival outcomes in mRCC patients treated with lenvatinib and everolimus after at least one ICI-containing regimen.Results:Nine studies met the inclusion criteria,encompassing a total of 441 patients.The lenvatinib and everolimus combination was primarily used in the third and subsequent lines of therapy.Median overall survival ranged from 7.5 to 24.5 months,while median progression-free survival was more consistent,between 6.1 and 6.7 months,except for one study reporting 12.9 months.Objective response rates varied widely(14.0%–55.7%).Adverse events of grade≥3 did not exceed the expected rate,with diarrhoea and proteinuria as the most reported events.Dose reductions and treatment discontinuations due to toxicity occurred but were generally lower than in prior pivotal trials.Conclusions:Real-world evidence suggests that lenvatinib and everolimus represent an effective and safe option after ICI failure in mRCC patients.Nevertheless,the lack of randomized phase III trials and the heterogeneity of existing studies highlight the need for more robust prospective research to guide post-ICI therapeutic strategies.展开更多
Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and l...Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs.展开更多
The cornea is the transparent connective tissue window at the front of the eye.The physiological role of the cornea is to conduct external light into the eye,focus it,together with the lens,onto the retina,and to prov...The cornea is the transparent connective tissue window at the front of the eye.The physiological role of the cornea is to conduct external light into the eye,focus it,together with the lens,onto the retina,and to provide rigidity to the entire eyeball.Therefore,good vision requires maintenance of the transparency and proper refractive shape of the cornea.The surface structures irregularities can be associated with wavefront aberrations and scattering errors.Light scattering in the human cornea causes a reduction of visual quality.In fact,the cornea must be transparent and maintain a smooth and stable curvature since it contributes to the major part of the focusing power of the eye.In most cases,a simple examination of visual acuity cannot demonstrate the reduction of visual quality secondary light scattering.In fact,clinical techniques for examining the human cornea in vivo have greatly expanded over the last few decades.The measurement of corneal back scattering qualifies the degree of corneal transparency.The measurement of corneal forward-scattering quantifies the amount of visual impairment that is produced by the alteration of transparency.The aim of this study was to review scattering in the human cornea and methods of measuring it.展开更多
A sensory stimulus can only be properly interpreted in light of the stimuli that surround it in space and time. The tilt illusion (TI) and tilt after-effect (TAE) provide good evidence that the perception of a tar...A sensory stimulus can only be properly interpreted in light of the stimuli that surround it in space and time. The tilt illusion (TI) and tilt after-effect (TAE) provide good evidence that the perception of a target depends strongly on both its spatial and temporal context. In previous studies, the TI and TAE have typically been investigated separately, so little is known about their co-effects on visual perception and information processing mechanisms. Here, we considered the influence of the spatial context and the temporal effect together and asked how center- surround context affects the TAE in foveal and para- foveal vision. Our results showed that different center-surround spatial patterns significantly affected the TAE for both foveal and para-foveal vision. In the fovea, the TAE was mainly produced by central adaptive gratings. Cross-oriented surroundings significantly inhibited the TAE, and iso-oriented surroundings slightly facilitated it; surround inhibition was much stronger than surround facilitation. In the para-fovea, the TAE was mainly decided by the surrounding patches. Likewise, a cross-oriented central patch inhibited the TAE, and an iso-oriented one facilitated it, but there was no significant difference between inhibition and facilitation. Our findings demonstrated, at the perceptual level, that our visual system adopts different mechanisms to process consistent or inconsistent central-surround orientation information and that the unequalmagnitude of surround inhibition and facilitation is vitally important for the visual system to improve the detectability or discriminability of novel or incongruent stimuli.展开更多
AIM:To investigate whether head and neck proprioception and motor control could be compensatory enhanced by long-term vision loss or impairment.METHODS:Individuals who were blind,low vision or sighted were included in...AIM:To investigate whether head and neck proprioception and motor control could be compensatory enhanced by long-term vision loss or impairment.METHODS:Individuals who were blind,low vision or sighted were included in the study,which would undergo the head repositioning test(HRT).The constant error(CE),absolute error(AE),variable error(VE)and root mean square error(RMSE)of each subject were statistically analyzed.Data were analyzed using the SAS 9.4.Tukey-Kramer for one-way ANOVA was used for comparison of blind,low vision,and sighted subjects,as well as to compare subjects with balanced vision,strong vision in the left eye and strong vision in the right eye.Independent sample t-test was used to compare subjects with congenital blindness and acquired blindness,as well as left and right hand dominance subjects.RESULTS:A total of 90 individuals(25 blind subjects,31 low vision subjects,and 34 sighted subjects)were included in the study.Among the blind subjects,14 cases had congenital blindness and 11 cases had acquired blindness.Among the blind and low vision subjects,21 cases had balanced binocular vision,17 cases had strong vision in the left eye and 18 cases had strong vision in the right eye.Among all subjects,11 cases were left hand dominance,and 79 cases were right hand dominance.There were significant differences in AE,VE,and RMSE in head rotation between blind,low vision,and sighted subjects(P<0.01),in AE,VE,and RMSE between blind and sighted(P<0.01),and in VE and RMSE between low vision and sighted(P<0.05).No significant difference between blind and low vision(P>0.05).Significant differences in CE and AE of head right rotation and CE of general head rotation between congenital and acquired(P<0.05).No significant differences between left and right hand dominance and in balance or not of binocular vision(P>0.05).CONCLUSION:Long-term vision loss or impairment does not lead to compensatory enhancement of head and neck proprioception and motor control.Acquired experience contributes to HRT performance in the blind and has long-lasting effects on plasticity in the development of proprioception and sensorimotor control.展开更多
The adjustment of administrative divisions is one of the important factors guiding China's urbanization, which has profound economic and social effects for regional development. In this paper, we comprehensively d...The adjustment of administrative divisions is one of the important factors guiding China's urbanization, which has profound economic and social effects for regional development. In this paper, we comprehensively describe the process of the adjustment of administrative divisions at provincial and municipal levels in China and summarize the effects on the basic structure and patterns of the spatial development. We quantitatively assess the effects on fields such as urbanization and social economy through the use of multidimensional scaling. The results show that: 1) Upgrading county to municipality(or city-governed district) is the main way of adjusting the administrative divisions. It is also an important factor in the spatial differentiation of interprovincial urbanization. China's population urbanization can be divided into four patterns including interprovincial migration, provincial migration, natural growth, and growth caused by the adjustment of administrative divisions, which is also the main reason for the increased Chinese urbanization rate at the provincial level. 2) Taking the city of Beijing as an example, we generalize five adjustment patterns made to administrative divisions: the set-up of sub-districts, the set-up of regional offices, the upgrading of townships to sub-districts, the upgrading of townships to towns, and the set-up of towns and the addition of new regional offices. We summarize the municipal urban spatial structure, including the sub-district office area in the central urban area, the regional office area in the new urban area, the mixed area of villages, towns, and sub-district offices in the suburb area, and the township area in the outer suburb area. 3) The adjustment of administrative divisions triggers a significant circulative accumulation effect, resulting in the spatial locking of population and industrial agglomeration. It affects the evolution of the urban spatial form and plays an important role in shaping the urban spatial structure to move to the characteristic of multicenter. In general, the adjustment of administrative divisions was an important factor affecting the inflated statistical level of urbanization and also an important driving force for the evolution of Chinese urban spatial organization structure.展开更多
Coal mine safety supervision system plays an important role in the coal mine safety management in China.However,the current supervision system is established on the basis of learning the advanced experience from other...Coal mine safety supervision system plays an important role in the coal mine safety management in China.However,the current supervision system is established on the basis of learning the advanced experience from other developed countries.It needs to be further improved according to national conditions.Therefore,the effectiveness of coal mine safety supervision system reform on three types of collieries are assessed by using time series analysis method based on comparative analysis of the supervision system before and after the reform in this paper.The regression results show that the structural reform is not conductive to the improvement of coal mine safety situation in the short term,but conductive significantly in the long term.Specifically,the effects in township coal mines are more significant than stateowned key coal mines in the long run,but negative effects also exist in the short term.The negative effects in state-owned key coal mines are non-significant compared with township coal mines.Moreover,the regression results are analyzed from the aspects of the closure policy of illegal small township coal mines at the end of 1998 and shortage of the new supervision system.Finally,the suggestions on improving the new supervision system are put forward based on the above analysis.展开更多
基金financially supported by the National Science Fund for Distinguished Young Scholars,China(No.52025041)the National Natural Science Foundation of China(Nos.52450003,U2341267,and 52174294)+1 种基金the National Postdoctoral Program for Innovative Talents,China(No.BX20240437)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-23-037 and FRF-TP-20-02C2)。
文摘The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.
基金supported by the National Natural Science Foundation of China(No.62464010)Spring City Plan-Special Program for Young Talents(K202005007)+2 种基金Yunnan Talents Support Plan for Young Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Frontier Research Team of Kunming University 2023.
文摘Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(No.RS-2022-00143178)the Ministry of Education(MOE)(Nos.2022R1A6A3A13053896 and 2022R1F1A1074616),Republic of Korea.
文摘Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.
文摘In the competitive retail industry of the digital era,data-driven insights into gender-specific customer behavior are essential.They support the optimization of store performance,layout design,product placement,and targeted marketing.However,existing computer vision solutions often rely on facial recognition to gather such insights,raising significant privacy and ethical concerns.To address these issues,this paper presents a privacypreserving customer analytics system through two key strategies.First,we deploy a deep learning framework using YOLOv9s,trained on the RCA-TVGender dataset.Cameras are positioned perpendicular to observation areas to reduce facial visibility while maintaining accurate gender classification.Second,we apply AES-128 encryption to customer position data,ensuring secure access and regulatory compliance.Our system achieved overall performance,with 81.5%mAP@50,77.7%precision,and 75.7%recall.Moreover,a 90-min observational study confirmed the system’s ability to generate privacy-protected heatmaps revealing distinct behavioral patterns between male and female customers.For instance,women spent more time in certain areas and showed interest in different products.These results confirm the system’s effectiveness in enabling personalized layout and marketing strategies without compromising privacy.
基金supported by the National Natural Science Foundation of China(No.32170121).
文摘Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns.
基金Supported by the Zhejiang Medical Health Science and Technology Project(No.2021KY217)the Basic Public Welfare Research Project of Wenzhou Municipal Science and Technology Bureau(No.2024Y1221).
文摘AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 groups:Group A(implanted with the SN6CWS),Group B(implanted with the MI60),and Group C(implanted with the Aspira-aA).ELP measurements were obtained with swept-source optical coherence tomography(SS-OCT)at 1d,1wk,1mo,and 3mo postoperatively.Subjective refraction assessments were conducted at 1wk,1mo,and 3mo following surgery.RESULTS:The study included 189 eyes of 150 cataract patients(66 males).There were 77 eyes in Group A,55 eyes in Group B,and 57 eyes in Group C.The root mean square of the ELP(ELPRMS)within the initial 3mo was significantly lower for Group A than for Groups B and C.Refractive changes within Group A were not significant across the time points of 1wk,1mo,and 3mo.Conversely,both Group B and Group C demonstrated statistically significant shifts toward hyperopia from 1wk to 3mo postsurgery.CONCLUSION:Among the three IOLs examined,the SN6CWS IOL showes the greatest stability during the first 3mo postoperatively.Between 1wk and 3mo after surgery,notable hyperopic shifts are evident in eyes implanted with the MI60 and Aspira-aA IOLs,whereas refractive outcomes remain relatively constant in eyes implanted with SN6CWS IOLs.
文摘Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management.
基金supported by the National Key Research and Development Program of Chinathe National Natural Science Foundation of China (Grant Nos.2024YFA1408000,12474097,and2023YFA1406001)+2 种基金the Guangdong Provincial Quantum Science Strategic Initiative (Grant No.GDZX2201001)the Center for Computational Science and Engineering at Southern University of Science and Technology,the Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen(for J.L.Z.and Y.L.)the Chinese funding sources applied via HPSTAR。
文摘The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.
基金supported by the CAS Strategic Priority Research Program(No.XDB0760102),the Ministry of Science and Technology of China(No.2022YFF0802501)the Major Science and Technology Infrastructure Maintenance and Transformation Project of the Chinese Academy of Sciences,Shanghai Science and Technology Innovation Action Plan-Phospherus Project(No.23YF1426200)the National Key Research and Development Program of China(No.2024YFE0212200).
文摘In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences.
文摘This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.
文摘Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenvatinib and everolimus represents a viable option,and the present review aimed to summarize its activity,effectiveness,and safety.Methods:A systematic review of the literature was conducted using PubMed,targeting studies published between 2018 and 2025.Eligible studies included English-language prospective and retrospective trials reporting survival outcomes in mRCC patients treated with lenvatinib and everolimus after at least one ICI-containing regimen.Results:Nine studies met the inclusion criteria,encompassing a total of 441 patients.The lenvatinib and everolimus combination was primarily used in the third and subsequent lines of therapy.Median overall survival ranged from 7.5 to 24.5 months,while median progression-free survival was more consistent,between 6.1 and 6.7 months,except for one study reporting 12.9 months.Objective response rates varied widely(14.0%–55.7%).Adverse events of grade≥3 did not exceed the expected rate,with diarrhoea and proteinuria as the most reported events.Dose reductions and treatment discontinuations due to toxicity occurred but were generally lower than in prior pivotal trials.Conclusions:Real-world evidence suggests that lenvatinib and everolimus represent an effective and safe option after ICI failure in mRCC patients.Nevertheless,the lack of randomized phase III trials and the heterogeneity of existing studies highlight the need for more robust prospective research to guide post-ICI therapeutic strategies.
基金supported by the Yunnan Fundamental Research Projects(Grant Nos.202401AU070163 and 202501AT070298)the Yunnan Engineering Research Center Innovation Ability Construction and Enhancement Projects(Grant No.2023-XMDJ-00617107)+5 种基金the University Service Key Industry Project of Yunnan Province(Grant No.FWCY-ZD2024005)the Expert Workstation Support Project of Yunnan Province(Grant No.202405AF140069)the Scientific Research Foundation of Kunming University of Science and Technology(Grant No.20220122)the Analysis and Test Foundation of Kunming University of Science and Technology(Grant No.2023T20220122)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN02057)the Ordos City Strategic Pioneering Science and Technology Special Program for New Energy(Grant No.DC2400003365).
文摘Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs.
文摘The cornea is the transparent connective tissue window at the front of the eye.The physiological role of the cornea is to conduct external light into the eye,focus it,together with the lens,onto the retina,and to provide rigidity to the entire eyeball.Therefore,good vision requires maintenance of the transparency and proper refractive shape of the cornea.The surface structures irregularities can be associated with wavefront aberrations and scattering errors.Light scattering in the human cornea causes a reduction of visual quality.In fact,the cornea must be transparent and maintain a smooth and stable curvature since it contributes to the major part of the focusing power of the eye.In most cases,a simple examination of visual acuity cannot demonstrate the reduction of visual quality secondary light scattering.In fact,clinical techniques for examining the human cornea in vivo have greatly expanded over the last few decades.The measurement of corneal back scattering qualifies the degree of corneal transparency.The measurement of corneal forward-scattering quantifies the amount of visual impairment that is produced by the alteration of transparency.The aim of this study was to review scattering in the human cornea and methods of measuring it.
基金supported by the National Basic Research Development Program of China ( 2013CB329401)National High Technology Development Program (863 Program) of China (2015AA020505)+2 种基金the National Natural Science Foundation of China (91120013, 6 1375115, 3 1300912, and 31100797)the 111 Project (B12027)F undamental Research Funds for the C entral Universities of China (Z YGX2013J098)
文摘A sensory stimulus can only be properly interpreted in light of the stimuli that surround it in space and time. The tilt illusion (TI) and tilt after-effect (TAE) provide good evidence that the perception of a target depends strongly on both its spatial and temporal context. In previous studies, the TI and TAE have typically been investigated separately, so little is known about their co-effects on visual perception and information processing mechanisms. Here, we considered the influence of the spatial context and the temporal effect together and asked how center- surround context affects the TAE in foveal and para- foveal vision. Our results showed that different center-surround spatial patterns significantly affected the TAE for both foveal and para-foveal vision. In the fovea, the TAE was mainly produced by central adaptive gratings. Cross-oriented surroundings significantly inhibited the TAE, and iso-oriented surroundings slightly facilitated it; surround inhibition was much stronger than surround facilitation. In the para-fovea, the TAE was mainly decided by the surrounding patches. Likewise, a cross-oriented central patch inhibited the TAE, and an iso-oriented one facilitated it, but there was no significant difference between inhibition and facilitation. Our findings demonstrated, at the perceptual level, that our visual system adopts different mechanisms to process consistent or inconsistent central-surround orientation information and that the unequalmagnitude of surround inhibition and facilitation is vitally important for the visual system to improve the detectability or discriminability of novel or incongruent stimuli.
基金Supported by National Key R&D Program of China(No.2018YFC2001400)Special Research Topic of Health Care(No.13BJZ53+1 种基金No.18BJZ34)Beijing Municipal Science and Technology Commission(No.Z191100004419006)。
文摘AIM:To investigate whether head and neck proprioception and motor control could be compensatory enhanced by long-term vision loss or impairment.METHODS:Individuals who were blind,low vision or sighted were included in the study,which would undergo the head repositioning test(HRT).The constant error(CE),absolute error(AE),variable error(VE)and root mean square error(RMSE)of each subject were statistically analyzed.Data were analyzed using the SAS 9.4.Tukey-Kramer for one-way ANOVA was used for comparison of blind,low vision,and sighted subjects,as well as to compare subjects with balanced vision,strong vision in the left eye and strong vision in the right eye.Independent sample t-test was used to compare subjects with congenital blindness and acquired blindness,as well as left and right hand dominance subjects.RESULTS:A total of 90 individuals(25 blind subjects,31 low vision subjects,and 34 sighted subjects)were included in the study.Among the blind subjects,14 cases had congenital blindness and 11 cases had acquired blindness.Among the blind and low vision subjects,21 cases had balanced binocular vision,17 cases had strong vision in the left eye and 18 cases had strong vision in the right eye.Among all subjects,11 cases were left hand dominance,and 79 cases were right hand dominance.There were significant differences in AE,VE,and RMSE in head rotation between blind,low vision,and sighted subjects(P<0.01),in AE,VE,and RMSE between blind and sighted(P<0.01),and in VE and RMSE between low vision and sighted(P<0.05).No significant difference between blind and low vision(P>0.05).Significant differences in CE and AE of head right rotation and CE of general head rotation between congenital and acquired(P<0.05).No significant differences between left and right hand dominance and in balance or not of binocular vision(P>0.05).CONCLUSION:Long-term vision loss or impairment does not lead to compensatory enhancement of head and neck proprioception and motor control.Acquired experience contributes to HRT performance in the blind and has long-lasting effects on plasticity in the development of proprioception and sensorimotor control.
基金Under the auspices of National Natural Science Foundation of China(No.41701164,71433008)Programme of Excellent Young Scientists of the Institute of Geographic Science and Natural Resources Research,Chinese Academy of Science
文摘The adjustment of administrative divisions is one of the important factors guiding China's urbanization, which has profound economic and social effects for regional development. In this paper, we comprehensively describe the process of the adjustment of administrative divisions at provincial and municipal levels in China and summarize the effects on the basic structure and patterns of the spatial development. We quantitatively assess the effects on fields such as urbanization and social economy through the use of multidimensional scaling. The results show that: 1) Upgrading county to municipality(or city-governed district) is the main way of adjusting the administrative divisions. It is also an important factor in the spatial differentiation of interprovincial urbanization. China's population urbanization can be divided into four patterns including interprovincial migration, provincial migration, natural growth, and growth caused by the adjustment of administrative divisions, which is also the main reason for the increased Chinese urbanization rate at the provincial level. 2) Taking the city of Beijing as an example, we generalize five adjustment patterns made to administrative divisions: the set-up of sub-districts, the set-up of regional offices, the upgrading of townships to sub-districts, the upgrading of townships to towns, and the set-up of towns and the addition of new regional offices. We summarize the municipal urban spatial structure, including the sub-district office area in the central urban area, the regional office area in the new urban area, the mixed area of villages, towns, and sub-district offices in the suburb area, and the township area in the outer suburb area. 3) The adjustment of administrative divisions triggers a significant circulative accumulation effect, resulting in the spatial locking of population and industrial agglomeration. It affects the evolution of the urban spatial form and plays an important role in shaping the urban spatial structure to move to the characteristic of multicenter. In general, the adjustment of administrative divisions was an important factor affecting the inflated statistical level of urbanization and also an important driving force for the evolution of Chinese urban spatial organization structure.
基金supported by the National Nat-ural Science Foundation Projects of China under Grant 71271206Innovation Project of Graduate Education for Jiangsu Province under Grant KYZZ_0377.
文摘Coal mine safety supervision system plays an important role in the coal mine safety management in China.However,the current supervision system is established on the basis of learning the advanced experience from other developed countries.It needs to be further improved according to national conditions.Therefore,the effectiveness of coal mine safety supervision system reform on three types of collieries are assessed by using time series analysis method based on comparative analysis of the supervision system before and after the reform in this paper.The regression results show that the structural reform is not conductive to the improvement of coal mine safety situation in the short term,but conductive significantly in the long term.Specifically,the effects in township coal mines are more significant than stateowned key coal mines in the long run,but negative effects also exist in the short term.The negative effects in state-owned key coal mines are non-significant compared with township coal mines.Moreover,the regression results are analyzed from the aspects of the closure policy of illegal small township coal mines at the end of 1998 and shortage of the new supervision system.Finally,the suggestions on improving the new supervision system are put forward based on the above analysis.