期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Research on YOLO algorithm for lightweight PCB defect detection based on MobileViT
1
作者 LIU Yuchen LIU Fuzheng JIANG Mingshun 《Optoelectronics Letters》 2025年第8期483-490,共8页
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t... Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment. 展开更多
关键词 YOLO lightweight network mobile vision transformer mobile Lightweight network convolutional block attention module cbam mechanism MobileViT CBAM PCB Defect Detection Regression Loss Function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部