期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-precision copper-grade identification via a vision transformer with PGNAA
1
作者 Jie Cao Chong-Gui Zhong +6 位作者 Han-Ting You Yan Zhang Ren-Bo Wang Shu-Min Zhou Jin-Hui Qu Rui Chen Shi-Liang Liu 《Nuclear Science and Techniques》 2025年第7期89-99,共11页
The identification of ore grades is a critical step in mineral resource exploration and mining.Prompt gamma neutron activation analysis(PGNAA)technology employs gamma rays generated by the nuclear reactions between ne... The identification of ore grades is a critical step in mineral resource exploration and mining.Prompt gamma neutron activation analysis(PGNAA)technology employs gamma rays generated by the nuclear reactions between neutrons and samples to achieve the qualitative and quantitative detection of sample components.In this study,we present a novel method for identifying copper grade by combining the vision transformer(ViT)model with the PGNAA technique.First,a Monte Carlo simulation is employed to determine the optimal sizes of the neutron moderator,thermal neutron absorption material,and dimensions of the device.Subsequently,based on the parameters obtained through optimization,a PGNAA copper ore measurement model is established.The gamma spectrum of the copper ore is analyzed using the ViT model.The ViT model is optimized for hyperparameters using a grid search.To ensure the reliability of the identification results,the test results are obtained through five repeated tenfold cross-validations.Long short-term memory and convolutional neural network models are compared with the ViT method.These results indicate that the ViT method is efficient in identifying copper ore grades with average accuracy,precision,recall,F_(1)score,and F_(1)(-)score values of 0.9795,0.9637,0.9614,0.9625,and 0.9942,respectively.When identifying associated minerals,the ViT model can identify Pb,Zn,Fe,and Co minerals with identification accuracies of 0.9215,0.9396,0.9966,and 0.8311,respectively. 展开更多
关键词 Copper-grade identification vision transformer model Prompt gamma neutron activation analysis Monte Carlo N-particle
在线阅读 下载PDF
Local Geomagnetic Component Modeling of Auroral Images Based on Local‑Global Feature
2
作者 WANG Bo ZHANG Yuanshu +5 位作者 CHENG Wei TIAN Xinqin SHENG Qinghong LI Jun LING Xiao LIU Xiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第6期710-727,共18页
Accurately predicting geomagnetic field is of great significance for space environment monitoring and space weather forecasting worldwide.This paper proposes a vision Transformer(ViT)hybrid model that leverages aurora... Accurately predicting geomagnetic field is of great significance for space environment monitoring and space weather forecasting worldwide.This paper proposes a vision Transformer(ViT)hybrid model that leverages aurora images to predict local geomagnetic station component,breaking the spatial limitations of geomagnetic stations.Our method utilizes the ViT backbone model in combination with convolutional networks to capture both the large-scale spatial correlation and distinct local feature correlation between aurora images and geomagnetic station data.Essentially,the model comprises a visual geometry group(VGG)image feature extraction network,a ViT-based encoder network,and a regression prediction network.Our experimental findings indicate that global features of aurora images play a more substantial role in predicting geomagnetic data than local features.Specifically,the hybrid model achieves a 39.1%reduction in root mean square error compared to the VGG model,a 29.5%reduction compared to the ViT model and a 35.3%reduction relative to the residual network(ResNet)model.Moreover,the fitting accuracy of the model surpasses that of the VGG,ViT,and ResNet models by 2.14%1.58%,and 4.1%,respectively. 展开更多
关键词 ultraviolet aurora image geomagnetic field prediction vision transformer(ViT)hybrid model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部