Visible-light-mediated O-H functionalization reactions of alcohols with diazo compounds have been fully developed in recent years.However,alkenyl and acetylenic alcohols were rarely examined in these reactions due to ...Visible-light-mediated O-H functionalization reactions of alcohols with diazo compounds have been fully developed in recent years.However,alkenyl and acetylenic alcohols were rarely examined in these reactions due to the inevitable side reactions involving cycloaddition.Herein,the visible-light-mediated O-H functionalization reactions of alkenyl alcohols with diazo compounds were developed.This process competed favorably with the cycloaddition reaction.A series of multifunctional ethers were provided in low to high yields with aryldiazoacetates or 3-diazooxindoles.Biologically relevant spirooxindole-fused oxacycle could be easily accessed from the O-H functionalization product of alkenyl alcohol and 3-diazooxindole.展开更多
In order to protect the environment and economize energy,a nitrogen-fixing photocatalyst,VMCeact,is investigated in this work.This catalyst is prepared from a natural mineral,vermiculite,and modified by Ce-based metal...In order to protect the environment and economize energy,a nitrogen-fixing photocatalyst,VMCeact,is investigated in this work.This catalyst is prepared from a natural mineral,vermiculite,and modified by Ce-based metal-organic framework,Ce-UiO-66.Vermiculite was treated with formic acid;thus,Ce-UiO-66 particles grew in-situ on vermiculite;then,Ce-UiO-66 particles were activated by ultraviolet irradiation.The vermiculite absorbed visible light with a narrow band gap,and transferred photogenerated electrons to the active sites on Ce-UiO-66.Moreover,the lamella structure of vermiculite protected Ce-UiO-66 during photocatalytic process.Therefore,with only 45.92 wt%of Ce-UiO-66,the nitrogen fixation performance of VMCeact was 2.29 times that of pure activated Ce-UiO-66 particles under 455nm light irradiation(apparent quantum efficiency of 4.49%),and retained at least 96.05%performance after 7×24 h of photocatalytic reaction.This cost-reduced,efficient and stable photocatalyst has the opportunity to facilitate environmentally friendly ammonia production.展开更多
The development of efficient photocatalysts for selective organic transformations under visible light remains a major challenge in sustainable chemistry.In this study,we present a straightforward solvothermal strategy...The development of efficient photocatalysts for selective organic transformations under visible light remains a major challenge in sustainable chemistry.In this study,we present a straightforward solvothermal strategy for fabricating a defect-engineered ZrO_(2)/UiO-66-NH_(2)hybrid material with abundant oxygen vacancies,enabling the visible-light-driven oxidation of benzyl alcohol to benzaldehyde.By optimizing the solvothermal treatment duration,the composite(UiO-66-NH_(2)-2h)achieves a 74.1%conversion of benzyl alcohol with>99%selectivity toward benzaldehyde under mild conditions,substantially out-performing pristine UiO-66-NH_(2).Structural and mechanistic studies reveal that the solvothermal process induces the in situ formation of ultrasmall,uniformly dispersed ZrO_(2)nanoparticles(~2.3 nm)within the MOF matrix,while simultaneously generating abundant oxygen vacancies,as confirmed by XPS,EPR,and HRTEM analyses.The defect-mediated electronic structure of the ZrO_(2)/UiO-66-NH_(2)hybrid enhances visible-light absorption,facilitates charge carrier separation,and pro-motes efficient activation of O_(2)into superoxide radicals(·O_(2)^(−)),the primary reactive species.Transient photocurrent measure-ments and electrochemical impedance spectroscopy further verify the improved charge separation efficiency.The synergistic interplay between oxygen vacancies and the intimate ZrO_(2)/UiO-66-NH_(2)interface provides a unique defect-mediated charge transfer pathway,distinguishing this system from conventional heterojunctions.This study demonstrates a facile,one-step approach to integrate defect engineering with interfacial hybridization in MOF-based photocatalysts,off ering a scalable route for solar-driven organic synthesis.展开更多
Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused b...Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused by the strong quantum size effect and their incomplete polymerisation with a large number of non-condensed surface amino groups,the practical applicability of CNs in photocatalysis is limited.In this study,CNs with broad visible-light absorption were synthesised using a 5-min fast thermal annealing.The removal of uncondensed amine groups reduces the bandgap of CNs from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Interestingly,the CNs were distorted after annealing,which can differentiate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs rose by 8.38 times.This research presents a dependable and speedy method for creating highly effective visible-light photocatalysts with narrowed bandgaps and improved visible-light absorption.展开更多
An additive-free and environmentally friendly strategy has been realized for the construction of S-substituted isothioureas through visible-light-induced multicomponent reaction starting fromα-diazoesters,aryl isothi...An additive-free and environmentally friendly strategy has been realized for the construction of S-substituted isothioureas through visible-light-induced multicomponent reaction starting fromα-diazoesters,aryl isothiocyanates,amines and cyclic ethers.This methodology features simple operation,mild reaction conditions,favorable functional group tolerance,easily available starting materials and high efficiency.展开更多
N-formylation of amines,a class of synthetically important reactions,is typically conducted using metal catalysts that are relatively expensive or not readily available and usually needs harsh conditions to increase t...N-formylation of amines,a class of synthetically important reactions,is typically conducted using metal catalysts that are relatively expensive or not readily available and usually needs harsh conditions to increase the reaction efficiency.Here,an efficient continuous microflow strategy was developed for the gas-liquid visible-light photocatalytic N-formylation of piperidine,which achieved a reaction yield of 82.97%and a selectivity of>99%at 12 min using cheap organic dye photocatalyst under mild reaction conditions.The influence of essential parameters,including light intensity,temperature and equivalents of the gas,additive and photocatalyst,on the reaction yield was systematically studied.Furthermore,kinetic investigations were conducted,exhibiting the dependence of reaction rate and equilibrium yield of N-formylpiperidine on light intensity,temperature and photocatalyst equivalent.The microflow photocatalytic approach established in this work,which realized a markedly higher space-time yield than the conventional batch method(37.9 vs.0.212 mmol h-1 L-1),paves the way for the continuous,green and efficient synthesis of N-formamides.展开更多
Dicarboxylic acids have a wide range of applications in the polymer industry to construct valuable materials.Photocatalysis has recently emerged as an efficient and sustainable strategy to generate dicarboxylic acids....Dicarboxylic acids have a wide range of applications in the polymer industry to construct valuable materials.Photocatalysis has recently emerged as an efficient and sustainable strategy to generate dicarboxylic acids.However,photocatalytic dicarboxylation with CO_(2) is mainly limited to unsaturated bonds,and the dicarboxylation of C-C single bonds still remains a challenge.Herein,we report a photocatalytic dicarboxylation of C-C single bonds in strained rings with CO_(2) units via consecutive photo-induced electron transfer(ConPET).It is also the first photocatalytic reductive ring-opening reaction of cyclobutanes.Notably,this transition-metal-free protocol exhibits good functional group tolerance,broad substrate scope,facile scalability,and easy product derivatizations.Moreover,diacids can easily be derivatized to mainchain liquid crystalline polyesters.展开更多
A photoredox-catalyzed cascade carbon/carboxylation of activated alkenes with malonates acetals and CO_(2) has been achieved,leading to a range of functionalized 1,1,3-tricarboxylates in good efficiency under mild rea...A photoredox-catalyzed cascade carbon/carboxylation of activated alkenes with malonates acetals and CO_(2) has been achieved,leading to a range of functionalized 1,1,3-tricarboxylates in good efficiency under mild reaction conditions.This reaction provides a facile and sustainable method for the synthesis of tricarboxylates by using CO_(2) as the carboxylic source.展开更多
Herein, we report the first visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO_(2)to synthesize hydroxy acid derivatives. A variety of valuable β-, γ-, δ-, ε–hydroxy acid derivatives are ob...Herein, we report the first visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO_(2)to synthesize hydroxy acid derivatives. A variety of valuable β-, γ-, δ-, ε–hydroxy acid derivatives are obtained in moderate to high yields under mild conditions. This protocol shows noteworthy functionalgroup compatibility, high chemo-and regioselectivities under transition-metal-free conditions with an inexpensive organo-dye as photosensitizer. Mechanistic studies indicate that the benzylic carbanion is generated as an intermediate via the sequential single electron transfer(SSET) process.展开更多
An efficient and sustainable protocol for regioselective hydrocarboxylation of alkynes to construct diverse propionic acid derivatives is disclosed.Under photoinduced conditions,the anti-Markovnikov hydrocarboxylation...An efficient and sustainable protocol for regioselective hydrocarboxylation of alkynes to construct diverse propionic acid derivatives is disclosed.Under photoinduced conditions,the anti-Markovnikov hydrocarboxylation of alkynes was realized with CO_(2) radical anion in-situ generated from formate as both a carbonyl source and a reductant.The collaboration between photosensitizer and hydrogen atom transfer catalyst promoted the catalytic cycle to work smoothly,giving a broad substrate scope including terminal and internal alkynes.The Giese radical addition of CO_(2) radical anion to the C—C triple bond is the key step to initiate the reaction.展开更多
A facile visible-light-induced 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4Cz IPN)catalyzed fourcomponent reaction of alkenes,quinoxalin-2(1H)-ones,P4S10and alcohols has been developed at room temperature.This...A facile visible-light-induced 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4Cz IPN)catalyzed fourcomponent reaction of alkenes,quinoxalin-2(1H)-ones,P4S10and alcohols has been developed at room temperature.This tandem reaction provides an efficient strategy for the construction of various phosphorodithioate-containing quinoxalin-2(1H)-ones with moderate to good yields by using air(dioxygen)as the green oxidant.Experimental studies revealed a radical process was involved in this photochemical reaction.展开更多
An efficient visible-light-induced radical cascade azidation/cyclization of 2-aryl indoles with trimethylsilyl azide(TMSN3)has been developed using organic dye Rose Bengal as the photocatalyst.This method did not requ...An efficient visible-light-induced radical cascade azidation/cyclization of 2-aryl indoles with trimethylsilyl azide(TMSN3)has been developed using organic dye Rose Bengal as the photocatalyst.This method did not require metal catalysts and additives,and used air as the oxidant to obtain diverse indolo[2,1-a]isoquinolin-6(5H)-ones in moderate to good yields.Mechanistic studies demonstrated that the reaction proceeded via a radical pathway.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such ...With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided.展开更多
Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, ...Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.展开更多
A heterojunction photocatalyst based on porous tubular g-C3N4 decorated with CdS nanoparticles was fabricated by a facile hydrothermal co-deposition method.The one-dimensional porous structure of g-C3N4 provides a hig...A heterojunction photocatalyst based on porous tubular g-C3N4 decorated with CdS nanoparticles was fabricated by a facile hydrothermal co-deposition method.The one-dimensional porous structure of g-C3N4 provides a higher specific surface area,enhanced light absorption,and better separation and transport performance of charge carriers along the longitudinal direction,all of which synergistically contribute to the superior photocatalytic activity observed.The significantly enhanced catalytic efficiency is also a benefit originating from the fast transfer of photogenerated electrons and holes between g-C3N4 and CdS through a built-in electric field,which was confirmed by investigating the morphology,structure,optical properties,electrochemical properties,and photocatalytic activities.Photocatalytic degradation of rhodamine B(RhB)and photocatalytic hydrogen evolution reaction were also carried out to investigate its photocatalytic performance.RhB can be degraded completely within 60 min,and the optimum H2 evolution rate of tubular g-C3N4/CdS composite is as high as 71.6μmol h^–1,which is about 16.3 times higher than that of pure bulk g-C3N4.The as-prepared nanostructure would be suitable for treating environmental pollutants as well as for water splitting.展开更多
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th...A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.展开更多
A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structu...A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structure,optical,and photocatalytic properties of the composite were characterized.The results showed that the composite had a sheet flower-like structure with a large specific surface area.Ultraviolet-visible diffuse reflection spectra and photoluminescence spectra showed that the composite had an excellent visible-light response and a low recombination rate of photoinduced electron hole pairs.The photocatalytic property of the composite was evaluated by the removal efficiency of rhodamine B and ciprofloxacin under visible-light illumination.The composite’s reaction rate constant of removing rhodamine B(/ciprofloxacin)was approximately 8.14(/4.94),42.63(/11.91)and 64.66(/36.07)times that of Bi12O17Cl2,P25,and BiOCl,respectively.Furthermore,the composite showed a wide applicable pH range and excellent reusability.Mechanism analysis showed that photogenerated holes played a dominant role and·O2–also contributed to photocatalytic degradation.In summary,this study presents a high-efficiency photocatalyst for wastewater treatment.展开更多
Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is importan...Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.展开更多
Visible-light responsive TiO2-V2O5 catalyst was prepared using a binary sol-gel and in-situ intercalation method. The TiO2 sol and V2O5 sol were mixed to disperse the V2O5 species in the TiO2 phase at molecular level....Visible-light responsive TiO2-V2O5 catalyst was prepared using a binary sol-gel and in-situ intercalation method. The TiO2 sol and V2O5 sol were mixed to disperse the V2O5 species in the TiO2 phase at molecular level. The binary sol was then intercalated into interspaces of polyaniline (PANI) by means of in-situ polymerization of aniline. Conglomeration of the TiO2-V2O5 dusters during the calcination process was avoided because of the wrap of polyaniline. The surface mor- phology, the crystal phases, the structure, and the absorption spectra of (PANI),/TiO2-V2O5 and the composite catalyst were studied using SEM, XRD, FT-IR, and UV-Vis. The photoactivity of the prepared catalyst under UV and visible light irradiation were evaluated by decolorization of methylene blue (MB) solution. The results showed that the composite catalyst displayed a homogeneous anatase phase, and the vanadium pentoxide species was highly dispersed in the TiO2 phase. The composite catalyst responded to visible light because of the narrowed band gap. In this study, the catalyst with the sol volume ratio of TiO2: V2O5 = 10:1 presented the best photocatalytic activity.展开更多
文摘Visible-light-mediated O-H functionalization reactions of alcohols with diazo compounds have been fully developed in recent years.However,alkenyl and acetylenic alcohols were rarely examined in these reactions due to the inevitable side reactions involving cycloaddition.Herein,the visible-light-mediated O-H functionalization reactions of alkenyl alcohols with diazo compounds were developed.This process competed favorably with the cycloaddition reaction.A series of multifunctional ethers were provided in low to high yields with aryldiazoacetates or 3-diazooxindoles.Biologically relevant spirooxindole-fused oxacycle could be easily accessed from the O-H functionalization product of alkenyl alcohol and 3-diazooxindole.
基金supported by the National Natural Science Foundation of China(Nos.21978251,22102141 and U1904215)Natural Science Foundation of Jiangsu Province(No.BK20200044).
文摘In order to protect the environment and economize energy,a nitrogen-fixing photocatalyst,VMCeact,is investigated in this work.This catalyst is prepared from a natural mineral,vermiculite,and modified by Ce-based metal-organic framework,Ce-UiO-66.Vermiculite was treated with formic acid;thus,Ce-UiO-66 particles grew in-situ on vermiculite;then,Ce-UiO-66 particles were activated by ultraviolet irradiation.The vermiculite absorbed visible light with a narrow band gap,and transferred photogenerated electrons to the active sites on Ce-UiO-66.Moreover,the lamella structure of vermiculite protected Ce-UiO-66 during photocatalytic process.Therefore,with only 45.92 wt%of Ce-UiO-66,the nitrogen fixation performance of VMCeact was 2.29 times that of pure activated Ce-UiO-66 particles under 455nm light irradiation(apparent quantum efficiency of 4.49%),and retained at least 96.05%performance after 7×24 h of photocatalytic reaction.This cost-reduced,efficient and stable photocatalyst has the opportunity to facilitate environmentally friendly ammonia production.
基金the National Natural Sci-ence Foundation of China(Nos.22271038,22378038,22172012)C.P.thanks Dalian Science and Technology Innovation Fund(No.2024JJ12CG033)+1 种基金C.P.and Z.S thank State Key Laboratory of Heavy Oil Processing(Nos.WX20230149,SKLHOP202402005)Y.-Y.L.thanks the Guangxi Key Laboratory of Information Materials,Guilin University of Electronic Technology(No.231019-K).
文摘The development of efficient photocatalysts for selective organic transformations under visible light remains a major challenge in sustainable chemistry.In this study,we present a straightforward solvothermal strategy for fabricating a defect-engineered ZrO_(2)/UiO-66-NH_(2)hybrid material with abundant oxygen vacancies,enabling the visible-light-driven oxidation of benzyl alcohol to benzaldehyde.By optimizing the solvothermal treatment duration,the composite(UiO-66-NH_(2)-2h)achieves a 74.1%conversion of benzyl alcohol with>99%selectivity toward benzaldehyde under mild conditions,substantially out-performing pristine UiO-66-NH_(2).Structural and mechanistic studies reveal that the solvothermal process induces the in situ formation of ultrasmall,uniformly dispersed ZrO_(2)nanoparticles(~2.3 nm)within the MOF matrix,while simultaneously generating abundant oxygen vacancies,as confirmed by XPS,EPR,and HRTEM analyses.The defect-mediated electronic structure of the ZrO_(2)/UiO-66-NH_(2)hybrid enhances visible-light absorption,facilitates charge carrier separation,and pro-motes efficient activation of O_(2)into superoxide radicals(·O_(2)^(−)),the primary reactive species.Transient photocurrent measure-ments and electrochemical impedance spectroscopy further verify the improved charge separation efficiency.The synergistic interplay between oxygen vacancies and the intimate ZrO_(2)/UiO-66-NH_(2)interface provides a unique defect-mediated charge transfer pathway,distinguishing this system from conventional heterojunctions.This study demonstrates a facile,one-step approach to integrate defect engineering with interfacial hybridization in MOF-based photocatalysts,off ering a scalable route for solar-driven organic synthesis.
基金supported by the National Natural Science Foundation of China(Nos.12104352 and 12204294)Fundamental Research Funds for the Central Universities(Nos.XJS_(2)12208 and 2020BJ-56)+1 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(No.2022-K67)the Natural Science Foundation of Shaanxi Province(Nos.2019JCW-17 and 2020JCW-15).
文摘Two-dimensional(2D)carbon nitride sheets(CNs)with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused by the strong quantum size effect and their incomplete polymerisation with a large number of non-condensed surface amino groups,the practical applicability of CNs in photocatalysis is limited.In this study,CNs with broad visible-light absorption were synthesised using a 5-min fast thermal annealing.The removal of uncondensed amine groups reduces the bandgap of CNs from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Interestingly,the CNs were distorted after annealing,which can differentiate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs rose by 8.38 times.This research presents a dependable and speedy method for creating highly effective visible-light photocatalysts with narrowed bandgaps and improved visible-light absorption.
基金financially supported by Natural Science Foundation of Shandong Province(No.ZR2021MB065)the major innovation fund of Shandong Province(No.2021ZDSYS_(2)3)the National Natural Science Foundation of China(Nos.21976105,22101237).
文摘An additive-free and environmentally friendly strategy has been realized for the construction of S-substituted isothioureas through visible-light-induced multicomponent reaction starting fromα-diazoesters,aryl isothiocyanates,amines and cyclic ethers.This methodology features simple operation,mild reaction conditions,favorable functional group tolerance,easily available starting materials and high efficiency.
基金the financial support from the National Natural Science Foundation of China(No.21808059)the Fundamental Research Funds for the Central Universities(No.JKA01221712).
文摘N-formylation of amines,a class of synthetically important reactions,is typically conducted using metal catalysts that are relatively expensive or not readily available and usually needs harsh conditions to increase the reaction efficiency.Here,an efficient continuous microflow strategy was developed for the gas-liquid visible-light photocatalytic N-formylation of piperidine,which achieved a reaction yield of 82.97%and a selectivity of>99%at 12 min using cheap organic dye photocatalyst under mild reaction conditions.The influence of essential parameters,including light intensity,temperature and equivalents of the gas,additive and photocatalyst,on the reaction yield was systematically studied.Furthermore,kinetic investigations were conducted,exhibiting the dependence of reaction rate and equilibrium yield of N-formylpiperidine on light intensity,temperature and photocatalyst equivalent.The microflow photocatalytic approach established in this work,which realized a markedly higher space-time yield than the conventional batch method(37.9 vs.0.212 mmol h-1 L-1),paves the way for the continuous,green and efficient synthesis of N-formamides.
基金Financial support is provided by the National Natural Science Foundation of China(No.22225106)Fundamental Research Funds from Sichuan University(No.2020SCUNL102)the Fundamental Research Funds for the Central Universities。
文摘Dicarboxylic acids have a wide range of applications in the polymer industry to construct valuable materials.Photocatalysis has recently emerged as an efficient and sustainable strategy to generate dicarboxylic acids.However,photocatalytic dicarboxylation with CO_(2) is mainly limited to unsaturated bonds,and the dicarboxylation of C-C single bonds still remains a challenge.Herein,we report a photocatalytic dicarboxylation of C-C single bonds in strained rings with CO_(2) units via consecutive photo-induced electron transfer(ConPET).It is also the first photocatalytic reductive ring-opening reaction of cyclobutanes.Notably,this transition-metal-free protocol exhibits good functional group tolerance,broad substrate scope,facile scalability,and easy product derivatizations.Moreover,diacids can easily be derivatized to mainchain liquid crystalline polyesters.
文摘A photoredox-catalyzed cascade carbon/carboxylation of activated alkenes with malonates acetals and CO_(2) has been achieved,leading to a range of functionalized 1,1,3-tricarboxylates in good efficiency under mild reaction conditions.This reaction provides a facile and sustainable method for the synthesis of tricarboxylates by using CO_(2) as the carboxylic source.
基金the National Natural Science Foundation of China (Nos. 22225106, 22301193)Fundamental Research Funds from Sichuan University (No. 2020SCUNL102)the Fundamental Research Funds for the Central Universities。
文摘Herein, we report the first visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO_(2)to synthesize hydroxy acid derivatives. A variety of valuable β-, γ-, δ-, ε–hydroxy acid derivatives are obtained in moderate to high yields under mild conditions. This protocol shows noteworthy functionalgroup compatibility, high chemo-and regioselectivities under transition-metal-free conditions with an inexpensive organo-dye as photosensitizer. Mechanistic studies indicate that the benzylic carbanion is generated as an intermediate via the sequential single electron transfer(SSET) process.
文摘An efficient and sustainable protocol for regioselective hydrocarboxylation of alkynes to construct diverse propionic acid derivatives is disclosed.Under photoinduced conditions,the anti-Markovnikov hydrocarboxylation of alkynes was realized with CO_(2) radical anion in-situ generated from formate as both a carbonyl source and a reductant.The collaboration between photosensitizer and hydrogen atom transfer catalyst promoted the catalytic cycle to work smoothly,giving a broad substrate scope including terminal and internal alkynes.The Giese radical addition of CO_(2) radical anion to the C—C triple bond is the key step to initiate the reaction.
基金supported by Natural Science Foundation of Hunan Province(No.2024JJ7198)Science Research Excellent Youth Project of Hunan Provincial Department of Education(No.23B0751)+1 种基金Natural Science Foundation of Shandong Province(No.ZR2021MB065)National Natural Science Foundation of China(No.22101237)。
文摘A facile visible-light-induced 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene(4Cz IPN)catalyzed fourcomponent reaction of alkenes,quinoxalin-2(1H)-ones,P4S10and alcohols has been developed at room temperature.This tandem reaction provides an efficient strategy for the construction of various phosphorodithioate-containing quinoxalin-2(1H)-ones with moderate to good yields by using air(dioxygen)as the green oxidant.Experimental studies revealed a radical process was involved in this photochemical reaction.
基金Project supported by the Scientific Research Foundation of Hunan Provincial Education Department(No.23B0650)the Natural Science Foundation of Hunan Province(No.2022JJ30418)+1 种基金the Key Scientific Research Foundation of Hunan University of Arts and Science(No.22ZD04)the Innovation and Entrepreneurship Training Program for College Students of Hunan University of Arts and Science(No.XDC202318)。
文摘An efficient visible-light-induced radical cascade azidation/cyclization of 2-aryl indoles with trimethylsilyl azide(TMSN3)has been developed using organic dye Rose Bengal as the photocatalyst.This method did not require metal catalysts and additives,and used air as the oxidant to obtain diverse indolo[2,1-a]isoquinolin-6(5H)-ones in moderate to good yields.Mechanistic studies demonstrated that the reaction proceeded via a radical pathway.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金supported by the National Natural Science Foundation of China(21421001,21276116,21477050,21301076,21303074)Natural Science Foundation of Jiangsu Province(BK20140530,BK20150482)+5 种基金China Postdoctoral Science Foundation(2015M570409)Chinese-German Cooperation Research Project(GZ1091)Program for High-Level Innovative and Entrepreneurial Talents in Jiangsu ProvinceProgram for New Century Excellent Talents in University(NCET-13-0835)Henry Fok Education Foundation(141068)Six Talents Peak Project in Jiangsu Province(XCL-025)~~
文摘With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided.
文摘Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterized by X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.
基金support from the National Natural Science Foundation of China(51602297 and U1510109)Major Research Project of Shandong Province(2016ZDJS11A04)+3 种基金Fundamental Research Funds for the Central Universities(201612007)Postdoctoral Innovation Program of Shandong Province(201603043)Australia Research Council(ARC)under the Project DP160104089Start-up Foundation for Advanced Talents of Qingdao University of Science and Technology(010022919)~~
文摘A heterojunction photocatalyst based on porous tubular g-C3N4 decorated with CdS nanoparticles was fabricated by a facile hydrothermal co-deposition method.The one-dimensional porous structure of g-C3N4 provides a higher specific surface area,enhanced light absorption,and better separation and transport performance of charge carriers along the longitudinal direction,all of which synergistically contribute to the superior photocatalytic activity observed.The significantly enhanced catalytic efficiency is also a benefit originating from the fast transfer of photogenerated electrons and holes between g-C3N4 and CdS through a built-in electric field,which was confirmed by investigating the morphology,structure,optical properties,electrochemical properties,and photocatalytic activities.Photocatalytic degradation of rhodamine B(RhB)and photocatalytic hydrogen evolution reaction were also carried out to investigate its photocatalytic performance.RhB can be degraded completely within 60 min,and the optimum H2 evolution rate of tubular g-C3N4/CdS composite is as high as 71.6μmol h^–1,which is about 16.3 times higher than that of pure bulk g-C3N4.The as-prepared nanostructure would be suitable for treating environmental pollutants as well as for water splitting.
基金supported by the National Natural Science Foundation of China(21871079,21501052)the Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province(YQ2019B006)~~
文摘A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.
基金supported by National Water Pollution Control and Treatment Science and Technology Major Project(2018ZX07110003)Key Research and Development Project of Shandong Province(2018CXGC1007)~~
文摘A BiOCl-Bi12O17Cl2 nanocomposite with a high visible-light response and a low photoinduced electron-hole pair recombination rate was successfully synthesized using an ultrasonic-hydrothermal method.The texture,structure,optical,and photocatalytic properties of the composite were characterized.The results showed that the composite had a sheet flower-like structure with a large specific surface area.Ultraviolet-visible diffuse reflection spectra and photoluminescence spectra showed that the composite had an excellent visible-light response and a low recombination rate of photoinduced electron hole pairs.The photocatalytic property of the composite was evaluated by the removal efficiency of rhodamine B and ciprofloxacin under visible-light illumination.The composite’s reaction rate constant of removing rhodamine B(/ciprofloxacin)was approximately 8.14(/4.94),42.63(/11.91)and 64.66(/36.07)times that of Bi12O17Cl2,P25,and BiOCl,respectively.Furthermore,the composite showed a wide applicable pH range and excellent reusability.Mechanism analysis showed that photogenerated holes played a dominant role and·O2–also contributed to photocatalytic degradation.In summary,this study presents a high-efficiency photocatalyst for wastewater treatment.
基金the National Natural Science Foundation of China(21975084,51672089)Special Funding on Applied Science and Technology in Guangdong(2017B020238005)+2 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing(Wuhan University of Technology)(2015-KF-7)State Scholarship Fund of China Scholarship Council(200808440114)the Ding Ying Talent Project of South China Agricultural University for their support
文摘Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.
文摘Visible-light responsive TiO2-V2O5 catalyst was prepared using a binary sol-gel and in-situ intercalation method. The TiO2 sol and V2O5 sol were mixed to disperse the V2O5 species in the TiO2 phase at molecular level. The binary sol was then intercalated into interspaces of polyaniline (PANI) by means of in-situ polymerization of aniline. Conglomeration of the TiO2-V2O5 dusters during the calcination process was avoided because of the wrap of polyaniline. The surface mor- phology, the crystal phases, the structure, and the absorption spectra of (PANI),/TiO2-V2O5 and the composite catalyst were studied using SEM, XRD, FT-IR, and UV-Vis. The photoactivity of the prepared catalyst under UV and visible light irradiation were evaluated by decolorization of methylene blue (MB) solution. The results showed that the composite catalyst displayed a homogeneous anatase phase, and the vanadium pentoxide species was highly dispersed in the TiO2 phase. The composite catalyst responded to visible light because of the narrowed band gap. In this study, the catalyst with the sol volume ratio of TiO2: V2O5 = 10:1 presented the best photocatalytic activity.