Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamformin...Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamforming map.Current algorithms for separating different moving sound sources have limited effectiveness,leading to significant residual noise,especially when the rotating source is strong enough to mask stationary sources completely.To overcome these challenges,a novel solution utilizing a virtual rotating array in the modal domain combined with robust principal component analysis is proposed to separate sound sources with different rotational speeds.This approach,named Robust Principal Component Analysis in the Modal domain(RPCA-M),investigates the performance of convex nuclear norm and non-convex Schatten-p norm to distinguish stationary and rotating sources.By comparing the errors in Cross-Spectral Matrix(CSM)recovery and acoustic imaging across different algorithms,the effectiveness of RPCA-M in separating stationary and moving sound sources is demonstrated.Importantly,this method effectively separates sound sources,even when there are significant variations in their amplitudes at different rotation speeds.展开更多
Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are h...Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters.展开更多
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints...BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.展开更多
目的:采用网状Meta分析系统评价不同非侵入性神经调控技术对孤独症谱系障碍儿童的康复疗效。方法:系统检索中国知网、维普网、万方数据知识服务平台、中国生物医学文献数据库、Pub Med、Web of Science、Cochrane Library、Embase数据库...目的:采用网状Meta分析系统评价不同非侵入性神经调控技术对孤独症谱系障碍儿童的康复疗效。方法:系统检索中国知网、维普网、万方数据知识服务平台、中国生物医学文献数据库、Pub Med、Web of Science、Cochrane Library、Embase数据库,选择不同非侵入性神经调控技术改善孤独症谱系障碍的随机对照试验,检索时限为各数据库建库至2025年1月,由2名研究者独立进行文献筛选、数据提取并对纳入的研究进行质量评价,应用Stata 18.0软件对数据进行网状Meta分析。结果:共纳入32个随机对照试验,涉及8种干预方式。网状Meta分析结果显示,在常规康复训练的基础上,在改善孤独症行为量表评分方面,虚拟现实技术效果最佳[SMD=-12.55,95%CI(-20.85,-4.25),P<0.05],其次为θ爆发式磁刺激[SMD=-11.34,95%CI(-20.94,-1.74),P<0.05]、重复经颅磁刺激[SMD=-9.28,95%CI(-12.80,-5.77),P<0.05]、神经反馈技术[SMD=-8.75,95%CI(-15.26,-2.23),P<0.05];在儿童孤独症评定量表评分方面,虚拟现实技术改善效果最为显著[SMD=-6.36,95%CI(-9.61,-3.11),P<0.05],其次为重复经颅磁刺激[SMD=-5.98,95%CI(-9.46,-2.51),P<0.05]、神经反馈技术[SMD=-4.63,95%CI(-9.14,-0.13),P<0.05]、经皮神经电刺激[SMD=-4.14,95%CI(-5.73,-2.55),P<0.05];在孤独症治疗评估量表评分方面,神经反馈技术改善效果最显著[SMD=-16.44,95%CI(-24.10,-8.78),P<0.05],其次为虚拟现实技术[SMD=-14.09,95%CI(-22.45,-5.73),P<0.05]、重复经颅磁刺激[SMD=-12.06,95%CI(-16.45,-7.68),P<0.05]、经皮神经电刺激[SMD=-10.58,95%CI(-20.44,-0.72),P<0.05]、经颅直流电刺激[SMD=-9.75,95%CI(-18.62,-0.88),P<0.05]。结论:当前证据表明,在常规康复训练基础上,不同非侵入性神经调控技术对孤独症谱系障碍的改善效果存在差异。虚拟现实技术在改善孤独症行为量表和儿童孤独症评定量表评分方面表现出最佳效果,而神经反馈技术在孤独症治疗评估量表评分方面的改善效果最为显著。受纳入研究数量和质量的限制,上述结论尚待更多高质量研究予以验证。展开更多
Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer...Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and crosssection distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to auicklv predict the forming aualitv of tube numerical control (NC) bending.展开更多
To assist an amputee in regaining his or her daily quality of life,based on analysis of the motion characteristics of the human hip,a 2-UPR/URR parallel mechanism with a passive limb was designed.The inverse kinematic...To assist an amputee in regaining his or her daily quality of life,based on analysis of the motion characteristics of the human hip,a 2-UPR/URR parallel mechanism with a passive limb was designed.The inverse kinematics of this mechanism was analyzed based on a closed-loop vector method.The constrained Jacobian matrix and kinematic Jacobian matrix of each limb were then analyzed,and a 6×6 fully Jacobian matrix was constructed.Based on this,kinematic performances were analyzed and summarized.Finally,the dynamic model of the mechanism was constructed based on the virtual work principle,and its theoretical solution was compared with the numerical results,which were obtained in a simulation environment.Results showed that the prosthetic mechanism had a larger rotating workspace and better mechanical performance,which accorded a range of motion and bearing capacity similar to that of the human hip in multiple gait modes.Moreover,the validity of the dynamic model and inverse kinematics were verified by comparing the theoretical and simulation results.Furthermore,with flexion and extension,the torque change in the hip prosthetic mechanism was similar to that of the human hip,which demonstrated the feasibility of the hip prosthetic mechanism and its good dynamic performance.展开更多
Currently, virtual assembly technology has attracted increasing attention due to considerations of solving assembly problems in virtual environment before actual assembly in manufactory. Previous studies on kinematic ...Currently, virtual assembly technology has attracted increasing attention due to considerations of solving assembly problems in virtual environment before actual assembly in manufactory. Previous studies on kinematic analysis of mechanism only aim at analyzing motion law of single mechanism, but can not simulate the multi-mechanisms motion process at the same time, let alone simulating the automatic assembly process of products in a whole assembly workshop. In order to simulate the assembly process of products in an assembly workshop and provide effective data for analyzing mechanical performance after finishing assembly simulation in virtual environment, this study investigates the kinematics analysis of mechanisms based on virtual assembly. Firstly, in view of the same function of the kinematic pairs and the assembly constraints on restricting the motion of components (subassembly or part), the method of identifying kinematic pairs automatically based on assembly constraints is presented. The information of kinematic pairs can be obtained through calculating the constraint degree of the assembly constraints. Secondly, the incidence matrix eliminating element method is proposed in order to search the information and establish the models of mechanisms automatically after finishing assembly simulation in virtual environment. Both methods have important significance for reducing the workload of pretreatment and promoting the level of automation of kinematics analysis. Finally, the method of kinematics analysis of mechanisms is presented. Based on Descartes coordinates, three types of kinematics equations are formed. The parameters, like displacement, velocity, and acceleration, can be obtained by solving these equations. All these data are important to analyze mechanical performance. All the methods are implemented and validated in the prototype system virtual assembly process planning(VAPP). The mechanism models are established and simulated in the VAPP system, and the result curves are shown accurately. The proposed kinematics analysis of mechanisms based on virtual assembly provides an effective method for simulating product assembly process automatically and analyzing mechanical performance after finishing assembly simulation.展开更多
Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed suc...Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed successfully. By utilizing instantaneous frequencyestimation (IFE) theoretics of TFA technique, and based on IFE of peak searching on thetime-frequency spectrum, order analysis (OA) functions is put forward and implemented, such as orderspectrum, order spectrum matrix, order tracking, order tracking filtering, and order componentextraction, etc. Unlike the home and abroad existing popular characteristic analyzers, which needkey phasing devices such as shaft encoder, phase-locked loop (PLL), phase-locked multiple frequency,tachometer, etc, to implement constant angle sampling directly or indirectly, whereas thisinstrument only uses the vibration signal of rotating machinery to carry out OA. This instrumentmakes up the shortage of these traditional instruments in analyzing the non-stationary signal ofrun-up and run-down process of rotating machinery. Therefore, it is a great breakthrough for theexisting order analyzers.展开更多
Some new theory and algorithms on wavelet analysis are proposed, including continuous wavelet transform (CWT), discrete wavelet transform (DWT), wavelet package transform (WPT), wavelet denosing and mother wavel...Some new theory and algorithms on wavelet analysis are proposed, including continuous wavelet transform (CWT), discrete wavelet transform (DWT), wavelet package transform (WPT), wavelet denosing and mother wavelet selection, etc. Using the component-based hierarchy mode, the platform for virtual instrument (VI) is constructed, and the functions such as data sampling, data analysis and data present, etc are provided. Subsequently, the wavelet analysis library is designed and developed. The library consists of expert system, experienced database, development platform and abundant wavelet analysis functional module, which together implement general and special wavelet analysis in the field of mechanical engineering, energy source, transportation and biomedicine, etc. Finally, the wavelet analysis virtual instrument library is applied to detect fault called engine knock. Experimental result indicates that the wavelet analysis virtual instrument library can efficiently solve the engineering problem such as detecting engine knock.展开更多
This paper presents an innovative investigation on prototyping a digital twin(DT)as the platform for human-robot interactive welding and welder behavior analysis.This humanrobot interaction(HRI)working style helps to ...This paper presents an innovative investigation on prototyping a digital twin(DT)as the platform for human-robot interactive welding and welder behavior analysis.This humanrobot interaction(HRI)working style helps to enhance human users'operational productivity and comfort;while data-driven welder behavior analysis benefits to further novice welder training.This HRI system includes three modules:1)a human user who demonstrates the welding operations offsite with her/his operations recorded by the motion-tracked handles;2)a robot that executes the demonstrated welding operations to complete the physical welding tasks onsite;3)a DT system that is developed based on virtual reality(VR)as a digital replica of the physical human-robot interactive welding environment.The DT system bridges a human user and robot through a bi-directional information flow:a)transmitting demonstrated welding operations in VR to the robot in the physical environment;b)displaying the physical welding scenes to human users in VR.Compared to existing DT systems reported in the literatures,the developed one provides better capability in engaging human users in interacting with welding scenes,through an augmented VR.To verify the effectiveness,six welders,skilled with certain manual welding training and unskilled without any training,tested the system by completing the same welding job;three skilled welders produce satisfied welded workpieces,while the other three unskilled do not.A data-driven approach as a combination of fast Fourier transform(FFT),principal component analysis(PCA),and support vector machine(SVM)is developed to analyze their behaviors.Given an operation sequence,i.e.,motion speed sequence of the welding torch,frequency features are firstly extracted by FFT and then reduced in dimension through PCA,which are finally routed into SVM for classification.The trained model demonstrates a 94.44%classification accuracy in the testing dataset.The successful pattern recognition in skilled welder operations should benefit to accelerate novice welder training.展开更多
基金supported by the National Key Research and Development Plan of China(No.2023YFB3406500)the National Natural Science Foundation of China(No.52475132)+2 种基金the Aeronautical Science Foundation of China(No.20200015053001)the Shaanxi Key Research Program Project,China(No.2024GX-ZDCYL-01–16)the Xi’an Key Industrial Chain Technology Research Project,China(No.2023JH-RGZNGG-0033)。
文摘Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamforming map.Current algorithms for separating different moving sound sources have limited effectiveness,leading to significant residual noise,especially when the rotating source is strong enough to mask stationary sources completely.To overcome these challenges,a novel solution utilizing a virtual rotating array in the modal domain combined with robust principal component analysis is proposed to separate sound sources with different rotational speeds.This approach,named Robust Principal Component Analysis in the Modal domain(RPCA-M),investigates the performance of convex nuclear norm and non-convex Schatten-p norm to distinguish stationary and rotating sources.By comparing the errors in Cross-Spectral Matrix(CSM)recovery and acoustic imaging across different algorithms,the effectiveness of RPCA-M in separating stationary and moving sound sources is demonstrated.Importantly,this method effectively separates sound sources,even when there are significant variations in their amplitudes at different rotation speeds.
基金supported by grants from the High-Level Oversea Talent Introduction Plan,Chinathe Special Fund for Basic Scientific Research in Central Universities of China-Doctoral Research and Innovation Fund Project,China(No.3072023CFJ0206).
文摘Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters.
文摘BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.
基金the National Natural Science Foundation of China (No.51164030)National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University (No.gf201501001) for the support on this research
文摘Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and crosssection distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to auicklv predict the forming aualitv of tube numerical control (NC) bending.
基金Supported by Beijing Natural Science Foundation(Grant No.L172021)National Natural Science Foundation of China(Grant No.51875033).
文摘To assist an amputee in regaining his or her daily quality of life,based on analysis of the motion characteristics of the human hip,a 2-UPR/URR parallel mechanism with a passive limb was designed.The inverse kinematics of this mechanism was analyzed based on a closed-loop vector method.The constrained Jacobian matrix and kinematic Jacobian matrix of each limb were then analyzed,and a 6×6 fully Jacobian matrix was constructed.Based on this,kinematic performances were analyzed and summarized.Finally,the dynamic model of the mechanism was constructed based on the virtual work principle,and its theoretical solution was compared with the numerical results,which were obtained in a simulation environment.Results showed that the prosthetic mechanism had a larger rotating workspace and better mechanical performance,which accorded a range of motion and bearing capacity similar to that of the human hip in multiple gait modes.Moreover,the validity of the dynamic model and inverse kinematics were verified by comparing the theoretical and simulation results.Furthermore,with flexion and extension,the torque change in the hip prosthetic mechanism was similar to that of the human hip,which demonstrated the feasibility of the hip prosthetic mechanism and its good dynamic performance.
基金supported by National Natural Science Foundation of China (Grant No. 50805009)National Defense Pre-Research Fund of China during the 11th Five-Year Plan Period (Grant No. 51318010205)
文摘Currently, virtual assembly technology has attracted increasing attention due to considerations of solving assembly problems in virtual environment before actual assembly in manufactory. Previous studies on kinematic analysis of mechanism only aim at analyzing motion law of single mechanism, but can not simulate the multi-mechanisms motion process at the same time, let alone simulating the automatic assembly process of products in a whole assembly workshop. In order to simulate the assembly process of products in an assembly workshop and provide effective data for analyzing mechanical performance after finishing assembly simulation in virtual environment, this study investigates the kinematics analysis of mechanisms based on virtual assembly. Firstly, in view of the same function of the kinematic pairs and the assembly constraints on restricting the motion of components (subassembly or part), the method of identifying kinematic pairs automatically based on assembly constraints is presented. The information of kinematic pairs can be obtained through calculating the constraint degree of the assembly constraints. Secondly, the incidence matrix eliminating element method is proposed in order to search the information and establish the models of mechanisms automatically after finishing assembly simulation in virtual environment. Both methods have important significance for reducing the workload of pretreatment and promoting the level of automation of kinematics analysis. Finally, the method of kinematics analysis of mechanisms is presented. Based on Descartes coordinates, three types of kinematics equations are formed. The parameters, like displacement, velocity, and acceleration, can be obtained by solving these equations. All these data are important to analyze mechanical performance. All the methods are implemented and validated in the prototype system virtual assembly process planning(VAPP). The mechanism models are established and simulated in the VAPP system, and the result curves are shown accurately. The proposed kinematics analysis of mechanisms based on virtual assembly provides an effective method for simulating product assembly process automatically and analyzing mechanical performance after finishing assembly simulation.
文摘Based on the recently quick-developing time-frequency analysis (TFA)technique and virtual instrument (VI) technique, a virtual instrument in characteristic analysis ofrotating machinery is researched and developed successfully. By utilizing instantaneous frequencyestimation (IFE) theoretics of TFA technique, and based on IFE of peak searching on thetime-frequency spectrum, order analysis (OA) functions is put forward and implemented, such as orderspectrum, order spectrum matrix, order tracking, order tracking filtering, and order componentextraction, etc. Unlike the home and abroad existing popular characteristic analyzers, which needkey phasing devices such as shaft encoder, phase-locked loop (PLL), phase-locked multiple frequency,tachometer, etc, to implement constant angle sampling directly or indirectly, whereas thisinstrument only uses the vibration signal of rotating machinery to carry out OA. This instrumentmakes up the shortage of these traditional instruments in analyzing the non-stationary signal ofrun-up and run-down process of rotating machinery. Therefore, it is a great breakthrough for theexisting order analyzers.
基金This project is supported by National Natural Science Foundation of China(No.50575233).
文摘Some new theory and algorithms on wavelet analysis are proposed, including continuous wavelet transform (CWT), discrete wavelet transform (DWT), wavelet package transform (WPT), wavelet denosing and mother wavelet selection, etc. Using the component-based hierarchy mode, the platform for virtual instrument (VI) is constructed, and the functions such as data sampling, data analysis and data present, etc are provided. Subsequently, the wavelet analysis library is designed and developed. The library consists of expert system, experienced database, development platform and abundant wavelet analysis functional module, which together implement general and special wavelet analysis in the field of mechanical engineering, energy source, transportation and biomedicine, etc. Finally, the wavelet analysis virtual instrument library is applied to detect fault called engine knock. Experimental result indicates that the wavelet analysis virtual instrument library can efficiently solve the engineering problem such as detecting engine knock.
文摘This paper presents an innovative investigation on prototyping a digital twin(DT)as the platform for human-robot interactive welding and welder behavior analysis.This humanrobot interaction(HRI)working style helps to enhance human users'operational productivity and comfort;while data-driven welder behavior analysis benefits to further novice welder training.This HRI system includes three modules:1)a human user who demonstrates the welding operations offsite with her/his operations recorded by the motion-tracked handles;2)a robot that executes the demonstrated welding operations to complete the physical welding tasks onsite;3)a DT system that is developed based on virtual reality(VR)as a digital replica of the physical human-robot interactive welding environment.The DT system bridges a human user and robot through a bi-directional information flow:a)transmitting demonstrated welding operations in VR to the robot in the physical environment;b)displaying the physical welding scenes to human users in VR.Compared to existing DT systems reported in the literatures,the developed one provides better capability in engaging human users in interacting with welding scenes,through an augmented VR.To verify the effectiveness,six welders,skilled with certain manual welding training and unskilled without any training,tested the system by completing the same welding job;three skilled welders produce satisfied welded workpieces,while the other three unskilled do not.A data-driven approach as a combination of fast Fourier transform(FFT),principal component analysis(PCA),and support vector machine(SVM)is developed to analyze their behaviors.Given an operation sequence,i.e.,motion speed sequence of the welding torch,frequency features are firstly extracted by FFT and then reduced in dimension through PCA,which are finally routed into SVM for classification.The trained model demonstrates a 94.44%classification accuracy in the testing dataset.The successful pattern recognition in skilled welder operations should benefit to accelerate novice welder training.