Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamformin...Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamforming map.Current algorithms for separating different moving sound sources have limited effectiveness,leading to significant residual noise,especially when the rotating source is strong enough to mask stationary sources completely.To overcome these challenges,a novel solution utilizing a virtual rotating array in the modal domain combined with robust principal component analysis is proposed to separate sound sources with different rotational speeds.This approach,named Robust Principal Component Analysis in the Modal domain(RPCA-M),investigates the performance of convex nuclear norm and non-convex Schatten-p norm to distinguish stationary and rotating sources.By comparing the errors in Cross-Spectral Matrix(CSM)recovery and acoustic imaging across different algorithms,the effectiveness of RPCA-M in separating stationary and moving sound sources is demonstrated.Importantly,this method effectively separates sound sources,even when there are significant variations in their amplitudes at different rotation speeds.展开更多
Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are h...Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters.展开更多
BACKGROUND Subchorionic hematoma(SCH)is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane.SCH can lead to adverse pregnancy outcome...BACKGROUND Subchorionic hematoma(SCH)is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane.SCH can lead to adverse pregnancy outcomes such as miscarriage,preterm birth,and other complications.Early detection and accurate assessment of SCH are crucial for appropriate management and improved pregnancy outcomes.AIM To evaluate the diagnostic efficacy of virtual organ computer-assisted analysis(VOCAL)in measuring the volume ratio of SCH to gestational sac(GS)combined with serum progesterone on early pregnancy outcomes in patients with SCH.METHODS A total of 153 patients with SCH in their first-trimester pregnancies between 6 and 11 wk were enrolled.All patients were followed up until a gestational age of 20 wk.The parameters of transvaginal two-dimensional ultrasound,including the circumference of SCH(Cs),surface area of SCH(Ss),circumference of GS(Cg),and surface area of GS(Sg),and the parameters of VOCAL with transvaginal three-dimensional ultrasound,including the three-dimensional volume of SCH(3DVs)and GS(3DVg),were recorded.The size of the SCH and its ratio to the GS size(Cs/Cg,Ss/Sg,3DVs/3DVg)were recorded and compared.RESULTS Compared with those in the normal pregnancy group,the adverse pregnancy group had higher Cs/Cg,Ss/Sg,and 3DVs/3DVg ratios(P<0.05).When 3DVs/3DVg was 0.220,the highest predictive performance predicted adverse pregnancy outcomes,resulting in an AUC of 0.767,and the sensitivity,specificity were 70.2%,75%respectively.VOCAL measuring 3DVs/3DVg combined with serum progesterone gave a diagnostic AUC of 0.824 for early pregnancy outcome in SCH patients,with a high sensitivity of 82.1%and a specificity of 72.1%,which showed a significant difference between AUC.CONCLUSION VOCAL-measured 3DVs/3DVg effectively quantifies the severity of SCH,while combined serum progesterone better predicts adverse pregnancy outcomes.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
基于CiteSpace对虚拟仿真教学研究现状、热点和趋势进行可视化分析,为进一步开展相关研究提供参考。以2013—2023年为时间轴,采用CiteSpace文献计量分析工具和知识图谱可视化技术,对Web of Science(WOS)核心合集数据库和中国知网(CNKI)...基于CiteSpace对虚拟仿真教学研究现状、热点和趋势进行可视化分析,为进一步开展相关研究提供参考。以2013—2023年为时间轴,采用CiteSpace文献计量分析工具和知识图谱可视化技术,对Web of Science(WOS)核心合集数据库和中国知网(CNKI)中文北大核心、中文社会科学引文索引和中国科学引文数据库(CSCD)收录的虚拟仿真教学相关文献进行统计和分析。结果显示,国内外虚拟仿真教学研究文献数量整体呈上升趋势,虚拟仿真教学研究热度仍会持续上升,虚拟仿真与人工智能技术是未来一段时间的研究热点。展开更多
“沙戈荒”风电经高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)送至负荷中心消纳场景中,风机采用虚拟同步机控制(virtual synchronous generator control,VSG)可自行构建输出电压和频率,为LCC-...“沙戈荒”风电经高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)送至负荷中心消纳场景中,风机采用虚拟同步机控制(virtual synchronous generator control,VSG)可自行构建输出电压和频率,为LCC-HVDC提供换相电压。采用虚拟同步机控制的直驱风电场(virtual synchronous generator direct-drive wind farm,VSG-DDWF)接入LCC-HVDC送端换流站近区时,系统次同步振荡(sub-synchronous oscillation,SSO)特性及机理尚未有定论。首先,文章采用模块化小信号建模方法建立了VSG-DDWF接入LCC-HVDC送端近区系统状态空间模型;其次,基于特征值分析法分析了系统SSO特性;然后,通过阻尼路径法揭示VSG-DDWF与LCC-HVDC系统SSO交互作用机理,并分析了风机机侧动态对系统阻尼的影响;最后,分析了风机台数、短路比(Short Circuit Ratio,SCR)、控制器参数对系统阻尼的影响。结果显示,VSG-DDWF同步控制环节主导的SSO模态具有失稳风险,VSG-DDWF与LCC-HVDC间存在SSO交互作用,加剧了系统发生的SSO风险;风机机侧动态会引入负阻尼,并使振荡频率发生偏移;风机网侧外环控制器比例系数减小,短路比增大时,系统SSO模态阻尼减小;VSG-DDWF中风机台数增多,系统SSO模态阻尼先增加后减小。展开更多
基金supported by the National Key Research and Development Plan of China(No.2023YFB3406500)the National Natural Science Foundation of China(No.52475132)+2 种基金the Aeronautical Science Foundation of China(No.20200015053001)the Shaanxi Key Research Program Project,China(No.2024GX-ZDCYL-01–16)the Xi’an Key Industrial Chain Technology Research Project,China(No.2023JH-RGZNGG-0033)。
文摘Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamforming map.Current algorithms for separating different moving sound sources have limited effectiveness,leading to significant residual noise,especially when the rotating source is strong enough to mask stationary sources completely.To overcome these challenges,a novel solution utilizing a virtual rotating array in the modal domain combined with robust principal component analysis is proposed to separate sound sources with different rotational speeds.This approach,named Robust Principal Component Analysis in the Modal domain(RPCA-M),investigates the performance of convex nuclear norm and non-convex Schatten-p norm to distinguish stationary and rotating sources.By comparing the errors in Cross-Spectral Matrix(CSM)recovery and acoustic imaging across different algorithms,the effectiveness of RPCA-M in separating stationary and moving sound sources is demonstrated.Importantly,this method effectively separates sound sources,even when there are significant variations in their amplitudes at different rotation speeds.
基金supported by grants from the High-Level Oversea Talent Introduction Plan,Chinathe Special Fund for Basic Scientific Research in Central Universities of China-Doctoral Research and Innovation Fund Project,China(No.3072023CFJ0206).
文摘Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters.
文摘BACKGROUND Subchorionic hematoma(SCH)is a common complication in early pregnancy characterized by the accumulation of blood between the uterine wall and the chorionic membrane.SCH can lead to adverse pregnancy outcomes such as miscarriage,preterm birth,and other complications.Early detection and accurate assessment of SCH are crucial for appropriate management and improved pregnancy outcomes.AIM To evaluate the diagnostic efficacy of virtual organ computer-assisted analysis(VOCAL)in measuring the volume ratio of SCH to gestational sac(GS)combined with serum progesterone on early pregnancy outcomes in patients with SCH.METHODS A total of 153 patients with SCH in their first-trimester pregnancies between 6 and 11 wk were enrolled.All patients were followed up until a gestational age of 20 wk.The parameters of transvaginal two-dimensional ultrasound,including the circumference of SCH(Cs),surface area of SCH(Ss),circumference of GS(Cg),and surface area of GS(Sg),and the parameters of VOCAL with transvaginal three-dimensional ultrasound,including the three-dimensional volume of SCH(3DVs)and GS(3DVg),were recorded.The size of the SCH and its ratio to the GS size(Cs/Cg,Ss/Sg,3DVs/3DVg)were recorded and compared.RESULTS Compared with those in the normal pregnancy group,the adverse pregnancy group had higher Cs/Cg,Ss/Sg,and 3DVs/3DVg ratios(P<0.05).When 3DVs/3DVg was 0.220,the highest predictive performance predicted adverse pregnancy outcomes,resulting in an AUC of 0.767,and the sensitivity,specificity were 70.2%,75%respectively.VOCAL measuring 3DVs/3DVg combined with serum progesterone gave a diagnostic AUC of 0.824 for early pregnancy outcome in SCH patients,with a high sensitivity of 82.1%and a specificity of 72.1%,which showed a significant difference between AUC.CONCLUSION VOCAL-measured 3DVs/3DVg effectively quantifies the severity of SCH,while combined serum progesterone better predicts adverse pregnancy outcomes.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘基于CiteSpace对虚拟仿真教学研究现状、热点和趋势进行可视化分析,为进一步开展相关研究提供参考。以2013—2023年为时间轴,采用CiteSpace文献计量分析工具和知识图谱可视化技术,对Web of Science(WOS)核心合集数据库和中国知网(CNKI)中文北大核心、中文社会科学引文索引和中国科学引文数据库(CSCD)收录的虚拟仿真教学相关文献进行统计和分析。结果显示,国内外虚拟仿真教学研究文献数量整体呈上升趋势,虚拟仿真教学研究热度仍会持续上升,虚拟仿真与人工智能技术是未来一段时间的研究热点。
文摘“沙戈荒”风电经高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)送至负荷中心消纳场景中,风机采用虚拟同步机控制(virtual synchronous generator control,VSG)可自行构建输出电压和频率,为LCC-HVDC提供换相电压。采用虚拟同步机控制的直驱风电场(virtual synchronous generator direct-drive wind farm,VSG-DDWF)接入LCC-HVDC送端换流站近区时,系统次同步振荡(sub-synchronous oscillation,SSO)特性及机理尚未有定论。首先,文章采用模块化小信号建模方法建立了VSG-DDWF接入LCC-HVDC送端近区系统状态空间模型;其次,基于特征值分析法分析了系统SSO特性;然后,通过阻尼路径法揭示VSG-DDWF与LCC-HVDC系统SSO交互作用机理,并分析了风机机侧动态对系统阻尼的影响;最后,分析了风机台数、短路比(Short Circuit Ratio,SCR)、控制器参数对系统阻尼的影响。结果显示,VSG-DDWF同步控制环节主导的SSO模态具有失稳风险,VSG-DDWF与LCC-HVDC间存在SSO交互作用,加剧了系统发生的SSO风险;风机机侧动态会引入负阻尼,并使振荡频率发生偏移;风机网侧外环控制器比例系数减小,短路比增大时,系统SSO模态阻尼减小;VSG-DDWF中风机台数增多,系统SSO模态阻尼先增加后减小。