Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testab...Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval- uation method is proposed in this paper based on testability virtual test data. Considering the char- acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir- tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software,the MAXScript scripting language and the AGEIA PhysX physics processing unit(PPU).The affect of various par...The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software,the MAXScript scripting language and the AGEIA PhysX physics processing unit(PPU).The affect of various parameters on screening efficiency were modeled.The parameters included vibration amplitude,frequency and direction.The length and inclination of the vibrating surface were also varied.The virtual experiment is in basic agreement with results predicted from screening theory.This shows that the virtual screener can be used for preliminary investigations and the results used to evaluate screen design.In addition it can help with theoretical research.展开更多
This paper presents the design and implementation of reconfigurable virtual environments (VEs) for virtual testing. It proposes a hybrid design approach that is derived from a so-called integration and composition of ...This paper presents the design and implementation of reconfigurable virtual environments (VEs) for virtual testing. It proposes a hybrid design approach that is derived from a so-called integration and composition of the reconfiguration strategy. The designing process has thus evolved from binding virtual objects using reconfiguration rules within the context of virtual testing scenarios. Therefore reconfigurable virtual environments are established with improved flexibility and scalability, tailored to a wide range of virtual testing applications. Those virtual environments integrate virtual testing scenarios, data acquisition, databases, rule mapping and application interfaces, which yield modular testing functions and an open-ended system architecture with a set of extensible interface tools to realize data exchange within reconfigurable VEs. This enables virtual testing scenarios to be reconfigured interactively based on real time data and communication between virtual environments and real environments. A virtual testing application has been implemented using reconfigurable VEs. Keywords Virtual environment - virtual testing - reconfigurable virtual reality Wenyan Wu graduated from Dalian University of Technology, China, with BSc and MSc in 1988 and 1991 respectively. She earned her PhD degree from University of Derby, UK, in 2002. She had taught and researched in Harbin Institute of Technology, China and De Montfort University, UK. She is currently a senior lecturer in simulation and virtual reality at Staffordshire University, UK. Her research interests include computer graphics, Virtual Reality and Augmented Reality system, advanced interface, modelling and simulation, distribution system.Zhengxu Zhao BSc, MSc, PhD, CEng, CITP, MBCS, full Professor in Applied Computing, Director of Virtual Reality Centre. He is also a Cheng Kong Scholar Project Professor in Virtual Reality Technology and Director of Virtual Reality Research Centre at the Southeast University, P R China. Professor Zhao’s research interests include computing graphics and VR systems, industrial process simulation, CIM and manufacturing management systems.展开更多
Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach fo...Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.展开更多
The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments...The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.展开更多
Recently, virtual realities and simulations play important roles in the development of automated driving functionalities. By an appropriate abstraction, they help to design, investigate and communicate real traffic sc...Recently, virtual realities and simulations play important roles in the development of automated driving functionalities. By an appropriate abstraction, they help to design, investigate and communicate real traffic scenario complexity. Especially, for edge cases investigations of interactions between vulnerable road users (VRU) and highly automated driving functions, valid virtual models are essential for the quality of results. The aim of this study is to measure, process and integrate real human movement behaviour into a virtual test environment for highly automated vehicle functionalities. The overall system consists of a georeferenced virtual city model and a vehicle dynamics model, including probabilistic sensor descriptions. By motion capture hardware, real humanoid behaviour is applied to a virtual human avatar in the test environment. Through retargeting methods, which enable the independency of avatar and person under test (PuT) dimensions, the virtual avatar diversity is increased. To verify the biomechanical behaviour of the virtual avatars, a qualitative study is performed, which funds on a representative movement sequence. The results confirm the functionality of the used methodology and enable PuT independence control of the virtual avatars in real-time.展开更多
The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for ...The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for aircraft mission effectiveness evaluation and design space exploration based on Virtual Operational Test(VOT),incorporating Virtual Open Scenario(VOS)and User in Scenarios(UIS)concepts.By employing modeling and simulation technologies in the early stages of aircraft development and design,a virtual environment can be constructed,allowing aircraft users to participate more closely and conveniently in the design process.Virtual tests conducted by users within the mission context provide data on mission effectiveness and critical user feedback.This paper outlines the main components of the virtual operational test process and related conceptual methods,and discusses an open support system framework that supports VOT.The effectiveness and adaptability of the method are demonstrated through two case studies:a beyond-visual-range air combat scenario and a helicopter ground attack scenario.These case studies demonstrate the evaluation of aircraft mission effectiveness and the sensitivity analysis and optimization of design and operational parameters based on VOT.展开更多
In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen g...In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen generation procedure considering aggregate gradation and irregular shape is developed based on the probability theory and the Monte Carlo method. The virtual rutting test is then conducted based on the generated digital specimen. In addition, on the basis of the time-temperature superposition (TTS) principle, a calculation method is used to reduce the computation time of the virtual rutting test. The simulation results are compared with the laboratory measurements. The results show that the calculation method based on the TFS principle in the discrete element (DE) viscoelastic model can significantly reduce the computation time. The deformation law of asphalt mixtures in the virtual rutting test is similar to the laboratory measurements, and the deformation and the dynamic stability of the virtual rutting test are slightly greater than the laboratory measurements. The two-dimensional virtual rutting test can predict the permanent deformation performance of asphalt mixtures.展开更多
The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,se...The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,self-study activities are not considered.In this study,an MATLAB-EnergyPlus joint simulation model was constructed based on the Building Controls Virtual Test Bed platform to reduce building energy consumption by optimizing the course schedule and opening strategy of self-study rooms in a holistic way.The following results were obtained by taking a university in Xi’an as an example:(1)The energy saving percentages obtained by timetabling optimization during the heating season examination week,heating season non-examination week,cooling season examination week,and cooling season non-examination week are 35%,29.4%,13.4%,and 13.4%,respectively.(2)Regarding the temporal arrangement,most courses are scheduled in the morning during the cooling season and afternoon during the heating season.Regarding the spatial arrangement,most courses are arranged in the central section of the middle floors of the building.(3)During the heating season,the additional building energy consumption incurred by the opening of self-study rooms decreases when duty heating temperature increases.展开更多
With the development of virtual test,the computation of the effect of different weather conditions on electromagnetic wave propagation is required in many simulation systems. Firstly,this paper presents a unique point...With the development of virtual test,the computation of the effect of different weather conditions on electromagnetic wave propagation is required in many simulation systems. Firstly,this paper presents a unique point of view for computing the electromagnetic wave attenuation ratio under different weather conditions by means of an independent electromagnetic wave propagation component that can be directly implemented in virtual test, and is easy to configure and easy to reuse. We present an analysis of the principles of electromagnetic wave propagation and the algorithms designed for realization of various propagation models within the electromagnetic wave propagation component. Secondly,this paper presents a use-case analysis and outlines the design of the component,verifies the developed models under various weather conditions,and obtains equivalent values as those obtained theoretically. Finally,we build a virtual test system,verify the system in different weather conditions,and again obtain equivalent values to those obtained theoretically. The algorithms in the electromagnetic wave propagation component are developed in the C language, which substantially improves the computational speed,and meets the real-time requirements of the virtual testing platform.展开更多
Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder...Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder surface is proposed based on the tailless flying wing aircraft. The closed-loop jet actuator system and stepless rudder surface switching control strategy are used to quantitatively study the control characteristics of circulation actuator for pitch and roll attitude through 3-DOF virtual flight test in a wind tunnel with a powered model at wind speed of 40 m/s. The results show that the combined use of circulation actuators can achieve bidirectional continuous and stable control of the aircraft’s pitch and roll attitude, with the maximum pitch rate of 12.3(°)/s and the maximum roll rate of 21.5(°)/s;the response time of attitude angular rate varying with the jet pressure ratio is less than 0.02 s, which can satisfy the control response requirements of aircraft motion stability for the control system;the jet rudder surface has a strong moment control ability, and the pitch moment of the jet elevator with a pressure ratio of 1.28 is the same as that of the mechanical elevator with 28° rudder deflection, which can expand the flight control boundary.展开更多
As one of the promising configurations of the next generation of commercial aircraft,research on departure characteristics of the Blended-Wing-Body(BWB)is of great signification to safe flight limits.A three-degree-of...As one of the promising configurations of the next generation of commercial aircraft,research on departure characteristics of the Blended-Wing-Body(BWB)is of great signification to safe flight limits.A three-degree-of-freedom(3-DOF)virtual flight test in a wind tunnel has been implemented for a candidate configuration to predict the departure characteristics.The support mechanism,the test model and the control law of the virtual flight test are introduced.In order to show the relationship between virtual flight test and actual flight test,the similarity criterion is also given.In open loop,the model has mild oscillations in the longitudinal and lateral directions,which are stable in closed-loop.The effect of flight control has been verified in virtual flight and actual subscale flight test.The analysis of system identification results indicate that the model has a good response to the excitation signal,and the response is in reasonable agreement with the flight test.Finally,the virtual flight departure test results are compared with the flight test.It shows that there is a good correspondence between the angle of attack and the elevator deflection at departure.This gives promising evidence of the practicability of virtual flight testing to predict departure of a BWB.展开更多
A virtual thermal test system was built through the co-simulation using Simulink and Comsol to realize the complete virtualization of the thermal test.Using the co-simulation technology,comprehensive simulation analys...A virtual thermal test system was built through the co-simulation using Simulink and Comsol to realize the complete virtualization of the thermal test.Using the co-simulation technology,comprehensive simulation analysis of the control system,electric field and thermal field was realized.The data state of each observation point could be directly observed at one time,including the output state information of the power amplifier,the output state information of the heater,and the thermal state information of the test unit.The virtual thermal test system has a predictive and guiding role for engineering thermal tests,and can realize thermal environment simulation beyond the existing thermal environment ground simulation capabilities,providing a basis for the development of future models.展开更多
Virtual instrument is playing the important role in automatic test system. This paper introduces a composition of a virtual instrument automatic test system and takes the VXIbus based a test software platform which is...Virtual instrument is playing the important role in automatic test system. This paper introduces a composition of a virtual instrument automatic test system and takes the VXIbus based a test software platform which is developed by CAT lab of the UESTC as an example. Then a method to model this system based on Petri net is proposed. Through this method, we can analyze the test task scheduling to prevent the deadlock or resources conflict. At last, this paper analyzes the feasibility of this method.展开更多
This paper adopts American National Instruments (NI) Company’s LabVIEW and LabVIEW RT virtual instrument softwareplatform and lots of things for this engine performance LabVIEW virtual instrument test system, such as...This paper adopts American National Instruments (NI) Company’s LabVIEW and LabVIEW RT virtual instrument softwareplatform and lots of things for this engine performance LabVIEW virtual instrument test system, such as the matched NI PCI dataCollection Card, NI SCXI signal-adjusting instrument and NI compact FieldPoint (cFP) distributed I/O real time system hardware.This system has realized multi performances’parallel test; and it can complete load, torsional moment, rotate speed, power, pressureand temperature’s real time monitoring automatically according to user’s setting; and finally through TCP/IP protocol it realizes testdata’s teleshare and telecontrol that user put on the test system. This system has such character as short development period, highuse efficiency and low cost, at the same time it has strong extensibility and reusability, so it has very high applied cost.展开更多
This study investigated the effectiveness of virtual reality (VR) distraction, compared to comic book distraction and no distraction, in reducing pain and anxiety during a medical procedure in a pediatric population: ...This study investigated the effectiveness of virtual reality (VR) distraction, compared to comic book distraction and no distraction, in reducing pain and anxiety during a medical procedure in a pediatric population: the skin prick test. Although this test has many advantages and is considered to be minimally invasive, it causes anxiety and painful discomfort in children. Ninety-two children aged 7 to 17 years consulting for an allergic test received VR distraction, comic book distraction, or no distraction. Outcome measures included pain score, level of anxiety, and VR measures. The results showed that there were no significant differences between the three groups regarding sex, age, and preprocedural anxiety level. In the distraction groups (VR and comic book), children reported significantly lower pain and procedural anxiety scores than children with no distraction;VR distraction had a more significant effect than comic book distraction. A decrease in anxiety before and during the skin prick test is significantly more significant in VR distraction. This study suggested the effectiveness and feasibility of VR to reduce pain and anxiety during the pediatric skin prick test.展开更多
基金supported by National Natural Science Foundation of China (No.51105369)
文摘Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval- uation method is proposed in this paper based on testability virtual test data. Considering the char- acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir- tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Projects 50574091 and 50774084 supported by the National Natural Science Foundation of China
文摘The authors have created a virtual test of vibration particle-screening using Autodesk's 3ds Max software,the MAXScript scripting language and the AGEIA PhysX physics processing unit(PPU).The affect of various parameters on screening efficiency were modeled.The parameters included vibration amplitude,frequency and direction.The length and inclination of the vibrating surface were also varied.The virtual experiment is in basic agreement with results predicted from screening theory.This shows that the virtual screener can be used for preliminary investigations and the results used to evaluate screen design.In addition it can help with theoretical research.
文摘This paper presents the design and implementation of reconfigurable virtual environments (VEs) for virtual testing. It proposes a hybrid design approach that is derived from a so-called integration and composition of the reconfiguration strategy. The designing process has thus evolved from binding virtual objects using reconfiguration rules within the context of virtual testing scenarios. Therefore reconfigurable virtual environments are established with improved flexibility and scalability, tailored to a wide range of virtual testing applications. Those virtual environments integrate virtual testing scenarios, data acquisition, databases, rule mapping and application interfaces, which yield modular testing functions and an open-ended system architecture with a set of extensible interface tools to realize data exchange within reconfigurable VEs. This enables virtual testing scenarios to be reconfigured interactively based on real time data and communication between virtual environments and real environments. A virtual testing application has been implemented using reconfigurable VEs. Keywords Virtual environment - virtual testing - reconfigurable virtual reality Wenyan Wu graduated from Dalian University of Technology, China, with BSc and MSc in 1988 and 1991 respectively. She earned her PhD degree from University of Derby, UK, in 2002. She had taught and researched in Harbin Institute of Technology, China and De Montfort University, UK. She is currently a senior lecturer in simulation and virtual reality at Staffordshire University, UK. Her research interests include computer graphics, Virtual Reality and Augmented Reality system, advanced interface, modelling and simulation, distribution system.Zhengxu Zhao BSc, MSc, PhD, CEng, CITP, MBCS, full Professor in Applied Computing, Director of Virtual Reality Centre. He is also a Cheng Kong Scholar Project Professor in Virtual Reality Technology and Director of Virtual Reality Research Centre at the Southeast University, P R China. Professor Zhao’s research interests include computing graphics and VR systems, industrial process simulation, CIM and manufacturing management systems.
基金National Natural Science Foundation of China(51105369)
文摘Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.
文摘The need for efficient and reproducible development processes for sensor and perception systems is growing with their increased use in modern vehicles. Such processes can be achieved by using virtual test environments and virtual sensor models. In the context of this, the present paper documents the development of a sensor model for depth estimation of virtual three-dimensional scenarios. For this purpose, the geometric and algorithmic principles of stereoscopic camera systems are recreated in a virtual form. The model is implemented as a subroutine in the Epic Games Unreal Engine, which is one of the most common Game Engines. Its architecture consists of several independent procedures that enable a local depth estimation, but also a reconstruction of a whole three-dimensional scenery. In addition, a separate programme for calibrating the model is presented. In addition to the basic principles, the architecture and the implementation, this work also documents the evaluation of the model created. It is shown that the model meets specifically defined requirements for real-time capability and the accuracy of the evaluation. Thus, it is suitable for the virtual testing of common algorithms and highly automated driving functions.
文摘Recently, virtual realities and simulations play important roles in the development of automated driving functionalities. By an appropriate abstraction, they help to design, investigate and communicate real traffic scenario complexity. Especially, for edge cases investigations of interactions between vulnerable road users (VRU) and highly automated driving functions, valid virtual models are essential for the quality of results. The aim of this study is to measure, process and integrate real human movement behaviour into a virtual test environment for highly automated vehicle functionalities. The overall system consists of a georeferenced virtual city model and a vehicle dynamics model, including probabilistic sensor descriptions. By motion capture hardware, real humanoid behaviour is applied to a virtual human avatar in the test environment. Through retargeting methods, which enable the independency of avatar and person under test (PuT) dimensions, the virtual avatar diversity is increased. To verify the biomechanical behaviour of the virtual avatars, a qualitative study is performed, which funds on a representative movement sequence. The results confirm the functionality of the used methodology and enable PuT independence control of the virtual avatars in real-time.
文摘The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for aircraft mission effectiveness evaluation and design space exploration based on Virtual Operational Test(VOT),incorporating Virtual Open Scenario(VOS)and User in Scenarios(UIS)concepts.By employing modeling and simulation technologies in the early stages of aircraft development and design,a virtual environment can be constructed,allowing aircraft users to participate more closely and conveniently in the design process.Virtual tests conducted by users within the mission context provide data on mission effectiveness and critical user feedback.This paper outlines the main components of the virtual operational test process and related conceptual methods,and discusses an open support system framework that supports VOT.The effectiveness and adaptability of the method are demonstrated through two case studies:a beyond-visual-range air combat scenario and a helicopter ground attack scenario.These case studies demonstrate the evaluation of aircraft mission effectiveness and the sensitivity analysis and optimization of design and operational parameters based on VOT.
基金The National Natural Science Foundation of China(No.51108081)
文摘In order to investigate the permanent deformation behavior of asphalt mixtures from discontinuity, the virtual rutting test of asphalt mixtures is developed by the discrete element method (DEM). A digital specimen generation procedure considering aggregate gradation and irregular shape is developed based on the probability theory and the Monte Carlo method. The virtual rutting test is then conducted based on the generated digital specimen. In addition, on the basis of the time-temperature superposition (TTS) principle, a calculation method is used to reduce the computation time of the virtual rutting test. The simulation results are compared with the laboratory measurements. The results show that the calculation method based on the TFS principle in the discrete element (DE) viscoelastic model can significantly reduce the computation time. The deformation law of asphalt mixtures in the virtual rutting test is similar to the laboratory measurements, and the deformation and the dynamic stability of the virtual rutting test are slightly greater than the laboratory measurements. The two-dimensional virtual rutting test can predict the permanent deformation performance of asphalt mixtures.
基金supported by the National Natural Science Foundation of China (52008328)National Key Research and Development Project (2018YFD1100202)+1 种基金the Science and Technology Department of Shaanxi Province (2020SF-393,2018ZDCXL-SF-03-04)the State Key Laboratory of Green Building in Western China (LSZZ202009).
文摘The energy consumption of a teaching building can be effectively reduced by timetable optimization.However,in most studies that explore methods to reduce building energy consumption by course timetable optimization,self-study activities are not considered.In this study,an MATLAB-EnergyPlus joint simulation model was constructed based on the Building Controls Virtual Test Bed platform to reduce building energy consumption by optimizing the course schedule and opening strategy of self-study rooms in a holistic way.The following results were obtained by taking a university in Xi’an as an example:(1)The energy saving percentages obtained by timetabling optimization during the heating season examination week,heating season non-examination week,cooling season examination week,and cooling season non-examination week are 35%,29.4%,13.4%,and 13.4%,respectively.(2)Regarding the temporal arrangement,most courses are scheduled in the morning during the cooling season and afternoon during the heating season.Regarding the spatial arrangement,most courses are arranged in the central section of the middle floors of the building.(3)During the heating season,the additional building energy consumption incurred by the opening of self-study rooms decreases when duty heating temperature increases.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201305)
文摘With the development of virtual test,the computation of the effect of different weather conditions on electromagnetic wave propagation is required in many simulation systems. Firstly,this paper presents a unique point of view for computing the electromagnetic wave attenuation ratio under different weather conditions by means of an independent electromagnetic wave propagation component that can be directly implemented in virtual test, and is easy to configure and easy to reuse. We present an analysis of the principles of electromagnetic wave propagation and the algorithms designed for realization of various propagation models within the electromagnetic wave propagation component. Secondly,this paper presents a use-case analysis and outlines the design of the component,verifies the developed models under various weather conditions,and obtains equivalent values as those obtained theoretically. Finally,we build a virtual test system,verify the system in different weather conditions,and again obtain equivalent values to those obtained theoretically. The algorithms in the electromagnetic wave propagation component are developed in the C language, which substantially improves the computational speed,and meets the real-time requirements of the virtual testing platform.
基金supported by the Equipment Pre-research Common Technology Project,China(No.41406010101).
文摘Circulation Control(CC) realizes rudderless flight control by driving compressed air jet to generate a virtual rudder surface, which significantly improves low detectability. The layout plan of combined control rudder surface is proposed based on the tailless flying wing aircraft. The closed-loop jet actuator system and stepless rudder surface switching control strategy are used to quantitatively study the control characteristics of circulation actuator for pitch and roll attitude through 3-DOF virtual flight test in a wind tunnel with a powered model at wind speed of 40 m/s. The results show that the combined use of circulation actuators can achieve bidirectional continuous and stable control of the aircraft’s pitch and roll attitude, with the maximum pitch rate of 12.3(°)/s and the maximum roll rate of 21.5(°)/s;the response time of attitude angular rate varying with the jet pressure ratio is less than 0.02 s, which can satisfy the control response requirements of aircraft motion stability for the control system;the jet rudder surface has a strong moment control ability, and the pitch moment of the jet elevator with a pressure ratio of 1.28 is the same as that of the mechanical elevator with 28° rudder deflection, which can expand the flight control boundary.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX18_0250)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,a Professional Competence Foundation of Shanghai Aircraft Design+1 种基金Research Institute,Key Laboratory of Unsteady AerodynamicsFlow Control,Ministry oflndus-try and Information Technology and the Fundamental Research Funds for the Central Universities(No.NP 2020403)and National Natural Science Foundation of China(12072155).
文摘As one of the promising configurations of the next generation of commercial aircraft,research on departure characteristics of the Blended-Wing-Body(BWB)is of great signification to safe flight limits.A three-degree-of-freedom(3-DOF)virtual flight test in a wind tunnel has been implemented for a candidate configuration to predict the departure characteristics.The support mechanism,the test model and the control law of the virtual flight test are introduced.In order to show the relationship between virtual flight test and actual flight test,the similarity criterion is also given.In open loop,the model has mild oscillations in the longitudinal and lateral directions,which are stable in closed-loop.The effect of flight control has been verified in virtual flight and actual subscale flight test.The analysis of system identification results indicate that the model has a good response to the excitation signal,and the response is in reasonable agreement with the flight test.Finally,the virtual flight departure test results are compared with the flight test.It shows that there is a good correspondence between the angle of attack and the elevator deflection at departure.This gives promising evidence of the practicability of virtual flight testing to predict departure of a BWB.
文摘A virtual thermal test system was built through the co-simulation using Simulink and Comsol to realize the complete virtualization of the thermal test.Using the co-simulation technology,comprehensive simulation analysis of the control system,electric field and thermal field was realized.The data state of each observation point could be directly observed at one time,including the output state information of the power amplifier,the output state information of the heater,and the thermal state information of the test unit.The virtual thermal test system has a predictive and guiding role for engineering thermal tests,and can realize thermal environment simulation beyond the existing thermal environment ground simulation capabilities,providing a basis for the development of future models.
基金Supported by the Ministry of Education for Ph. D (20030614006)
文摘Virtual instrument is playing the important role in automatic test system. This paper introduces a composition of a virtual instrument automatic test system and takes the VXIbus based a test software platform which is developed by CAT lab of the UESTC as an example. Then a method to model this system based on Petri net is proposed. Through this method, we can analyze the test task scheduling to prevent the deadlock or resources conflict. At last, this paper analyzes the feasibility of this method.
文摘This paper adopts American National Instruments (NI) Company’s LabVIEW and LabVIEW RT virtual instrument softwareplatform and lots of things for this engine performance LabVIEW virtual instrument test system, such as the matched NI PCI dataCollection Card, NI SCXI signal-adjusting instrument and NI compact FieldPoint (cFP) distributed I/O real time system hardware.This system has realized multi performances’parallel test; and it can complete load, torsional moment, rotate speed, power, pressureand temperature’s real time monitoring automatically according to user’s setting; and finally through TCP/IP protocol it realizes testdata’s teleshare and telecontrol that user put on the test system. This system has such character as short development period, highuse efficiency and low cost, at the same time it has strong extensibility and reusability, so it has very high applied cost.
文摘This study investigated the effectiveness of virtual reality (VR) distraction, compared to comic book distraction and no distraction, in reducing pain and anxiety during a medical procedure in a pediatric population: the skin prick test. Although this test has many advantages and is considered to be minimally invasive, it causes anxiety and painful discomfort in children. Ninety-two children aged 7 to 17 years consulting for an allergic test received VR distraction, comic book distraction, or no distraction. Outcome measures included pain score, level of anxiety, and VR measures. The results showed that there were no significant differences between the three groups regarding sex, age, and preprocedural anxiety level. In the distraction groups (VR and comic book), children reported significantly lower pain and procedural anxiety scores than children with no distraction;VR distraction had a more significant effect than comic book distraction. A decrease in anxiety before and during the skin prick test is significantly more significant in VR distraction. This study suggested the effectiveness and feasibility of VR to reduce pain and anxiety during the pediatric skin prick test.