Compared with first-order surface-related multiples from marine data,the onshore internal multiples are weaker and are always combined with a hazy and occasionally strong interference pattern.It is usually difficult t...Compared with first-order surface-related multiples from marine data,the onshore internal multiples are weaker and are always combined with a hazy and occasionally strong interference pattern.It is usually difficult to discriminate these events from complex targets and highly scattering overburdens,especially when the primary energy from deep layers is weaker than that from shallow layers.The internal multiple elimination is even more challenging due to the fact that the velocity and energy difference between primary reflections and internal multiples is tiny.In this study,we propose an improved method which formulates the elimination of the internal multiples as an optimization problem and develops a convolution factor T.The generated internal multiples at all interfaces are obtained using the convolution factor T through iterative inversion of the initial multiple model.The predicted internal multiples are removed from seismic data through subtraction.Finally,several synthetic experiments are conducted to validate the effectiveness of our approach.The results of our study indicate that compared with the traditional virtual events method,the improved method simplifies the multiple prediction process in which internal multiples generated from each interface are built through iterative inversion,thus reducing the calculation cost,improving the accuracy,and enhancing the adaptability of field data.展开更多
In practical seismic exploration, internal multiples generated when the wave impedance of medium is strong, and seismic records are recorded. The method of virtual event repress internal multiples is to move scattered...In practical seismic exploration, internal multiples generated when the wave impedance of medium is strong, and seismic records are recorded. The method of virtual event repress internal multiples is to move scattered points from underground to the surface, similar to the method of the surface-related multiple elimination (SRME). The method of SRME belongs to the prediction-subtraction approaches to eliminate internal multiples, prediction method is based on building a brand new way of seismic wave propagation (virtual reflection and virtual event), so that it has forward and backward wave propagation, and through convolution with significant wave to predict the internal multiples. Due to required data needing field information of full-wave, the authors use Seislet transform interpolating the missing data to ensure the premise of internal multiples prediction. The test data show that the above method has achieved good results.展开更多
The attenuation of prestack internal multiples based on virtual seismic events is computationally costly and hinders seismic data processing. We propose a multiples attenuation method for poststack seismic data by app...The attenuation of prestack internal multiples based on virtual seismic events is computationally costly and hinders seismic data processing. We propose a multiples attenuation method for poststack seismic data by approximating conventional virtual events. The proposed method is iterative. The proposed method is tested using 2D synthetic and the field poststack seismic datasets. Compared with the conventional virtual events method, the proposed method does not require data regularization and offers higher computation efficiency. The method requires to know the travel time of the primary reflection waves. The results of the application to 2D field datasets suggest that the proposed method attenuates the internal multiples while highlighting the deep primaries.展开更多
针对多无人艇编队避障问题,对静态避障的路径消耗问题进行建模分析,在动态避障时提出一种偏置人工势场法使策略符合艇群国际海上避碰规则(swarm International Regulations for Preventing Collisions at Sea,sCOLREGS)。本方法首先对...针对多无人艇编队避障问题,对静态避障的路径消耗问题进行建模分析,在动态避障时提出一种偏置人工势场法使策略符合艇群国际海上避碰规则(swarm International Regulations for Preventing Collisions at Sea,sCOLREGS)。本方法首先对传统人工势场法进行改进,定义符合艇群会遇态势判断需求的sCOLREGS,通过速度障碍法实时判断碰撞风险,然后利用偏置斥力区域的改进人工势场法实现对规则的遵守。仿真实验表明,本文方法在障碍物与编队大小相当时可显著减少避障路程,在确保避障实时性的同时,较好地遵守了国际海上避碰规则相关条例。研究结论可为海面无人艇集群安全航行提供参考。展开更多
基金the National Natural Science Foundation of China under Grant Nos.41974116 and 41930431Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities under Grant No.140119001 for supporting this work
文摘Compared with first-order surface-related multiples from marine data,the onshore internal multiples are weaker and are always combined with a hazy and occasionally strong interference pattern.It is usually difficult to discriminate these events from complex targets and highly scattering overburdens,especially when the primary energy from deep layers is weaker than that from shallow layers.The internal multiple elimination is even more challenging due to the fact that the velocity and energy difference between primary reflections and internal multiples is tiny.In this study,we propose an improved method which formulates the elimination of the internal multiples as an optimization problem and develops a convolution factor T.The generated internal multiples at all interfaces are obtained using the convolution factor T through iterative inversion of the initial multiple model.The predicted internal multiples are removed from seismic data through subtraction.Finally,several synthetic experiments are conducted to validate the effectiveness of our approach.The results of our study indicate that compared with the traditional virtual events method,the improved method simplifies the multiple prediction process in which internal multiples generated from each interface are built through iterative inversion,thus reducing the calculation cost,improving the accuracy,and enhancing the adaptability of field data.
基金Supported by the National Natural Science Foundation of China(40974054,41174080)the National Basic Research Program of China(973 Program)(2009CB219301)+1 种基金the National Innovation Research Project for Exploration and Development of Oil Shale(OSP-02,OSR-02)the National Public Benefit Scientific Research Foundation of China(201011078)
文摘In practical seismic exploration, internal multiples generated when the wave impedance of medium is strong, and seismic records are recorded. The method of virtual event repress internal multiples is to move scattered points from underground to the surface, similar to the method of the surface-related multiple elimination (SRME). The method of SRME belongs to the prediction-subtraction approaches to eliminate internal multiples, prediction method is based on building a brand new way of seismic wave propagation (virtual reflection and virtual event), so that it has forward and backward wave propagation, and through convolution with significant wave to predict the internal multiples. Due to required data needing field information of full-wave, the authors use Seislet transform interpolating the missing data to ensure the premise of internal multiples prediction. The test data show that the above method has achieved good results.
基金supported by the National Natural Science Foundation of China(No.41674122)National Science and Technology Major Project of China(No.2016ZX05004003)National Basic Research Program of China(No.2013CB228602)
文摘The attenuation of prestack internal multiples based on virtual seismic events is computationally costly and hinders seismic data processing. We propose a multiples attenuation method for poststack seismic data by approximating conventional virtual events. The proposed method is iterative. The proposed method is tested using 2D synthetic and the field poststack seismic datasets. Compared with the conventional virtual events method, the proposed method does not require data regularization and offers higher computation efficiency. The method requires to know the travel time of the primary reflection waves. The results of the application to 2D field datasets suggest that the proposed method attenuates the internal multiples while highlighting the deep primaries.
文摘针对多无人艇编队避障问题,对静态避障的路径消耗问题进行建模分析,在动态避障时提出一种偏置人工势场法使策略符合艇群国际海上避碰规则(swarm International Regulations for Preventing Collisions at Sea,sCOLREGS)。本方法首先对传统人工势场法进行改进,定义符合艇群会遇态势判断需求的sCOLREGS,通过速度障碍法实时判断碰撞风险,然后利用偏置斥力区域的改进人工势场法实现对规则的遵守。仿真实验表明,本文方法在障碍物与编队大小相当时可显著减少避障路程,在确保避障实时性的同时,较好地遵守了国际海上避碰规则相关条例。研究结论可为海面无人艇集群安全航行提供参考。