This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slo...This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slow fading channels, random beamforming is adopted. Random beamforming matrix exploiting virtual channel representation is constructed, which can match the channel matrix of the desired user better. Sirnultaneously, adaptive coded modulation is applied to each sub-channel of the selected user to improve the system performance further.展开更多
In order to improve the network performance furthermore, a routing algorithm for 2D-Torus is investigated from the standpoint of load balance for virtual channels. The 2D-Torus network is divided into two virtual netw...In order to improve the network performance furthermore, a routing algorithm for 2D-Torus is investigated from the standpoint of load balance for virtual channels. The 2D-Torus network is divided into two virtual networks and each physical channel is split into three virtual channels. A novel virtual channel allocation policy and a routing algorithm are proposed, in which traffic load is distributed to those three virtual channels in a more load-balanced manner by introducing a random parameter. Simulations of the proposed algorithm are developed with a SystemC-based test bench. The results show that compared with the negative first for Torus networks (NF-T) algorithm, the proposed algorithm can achieve better performance in terms of network latency and throughput under different traffic patterns. It also shows that a routing algorithm with load balance for virtual channels can significantly improve the network performance furthermore.展开更多
In wormhole meshes, a reliable routing is supposed to be deadlock-free and fault-tolerant. Many routing algorithms are able to tolerate a large number of faults enclosed by rectangular blocks or special convex, none o...In wormhole meshes, a reliable routing is supposed to be deadlock-free and fault-tolerant. Many routing algorithms are able to tolerate a large number of faults enclosed by rectangular blocks or special convex, none of them, however, is capable of handling two convex fault regions with distance two by using only two virtual networks. In this paper, a fault-tolerant wormhole routing algorithm is presented to tolerate the disjointed convex faulty regions with distance two or no less, which do not contain any nonfaulty nodes and do not prohibit any routing as long as nodes outside faulty regions are connected in the mesh network. The processors' overlapping along the boundaries of different fault regions is allowed. The proposed algorithm, which routes the messages by X-Y routing algorithm in fault-free region, can tolerate convex fault-connected regions with only two virtual channels per physical channel, and is deadlock- and livelock-free. The proposed algorithm can be easily extended to adaptive routing.展开更多
This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(...This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(VCs)in the environment of the number of receive antennas being no less than that of transmit antennas.The VCs will cause a rank deficiency problem in computing the subspace information.With the subcarrier mapping matrix,the received signal is simplified to remove the rank deficiency.We use the RIS scheme to generate many times of equivalent symbols so the channel identification can converge with few received OFDM blocks.The RIS scheme will convert the white noise into non-white noise.With the Cholesky factorization,a noise whitening technique is developed to turn the non-white noise back to white noise.We further analyze the necessary conditions of identifiability of channel estimation.Simulations are performed to show the superiority of the proposed method.展开更多
The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement met...The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement method for MIMO OFDM systems under time-varying channels with the guard band. The time-varying channel is described by complex exponential basis expansion model (BEM). We discuss the least square (LS) channel estimation to obtain the minimum mean square error (MSE) and derive the pilot allocation that can satisfy the minimum MSE with regard to guard band in time-varying channels. It is shown that optimal pilot clusters can distribute non-uniformly in frequency domain and minimize the MSE. We generalize our scheme over G OFDM symbols and compare it with comb pilots. It is demonstrated that the proposed approach is more effective than previous work. Simulation results validate our theoretical analysis.展开更多
Despite extensive research, timing channels (TCs) are still known as a principal category of threats that aim to leak and transmit information by perturbing the timing or ordering of events. Existing TC detection appr...Despite extensive research, timing channels (TCs) are still known as a principal category of threats that aim to leak and transmit information by perturbing the timing or ordering of events. Existing TC detection approaches use either signature-based approaches to detect known TCs or anomaly-based approach by modeling the legitimate network traffic in order to detect unknown TCs. Un-fortunately, in a software-defined networking (SDN) environment, most existing TC detection approaches would fail due to factors such as volatile network traffic, imprecise timekeeping mechanisms, and dynamic network topology. Furthermore, stealthy TCs can be designed to mimic the legitimate traffic pattern and thus evade anomalous TC detection. In this paper, we overcome the above challenges by presenting a novel framework that harnesses the advantages of elastic re-sources in the cloud. In particular, our framework dynamically configures SDN to enable/disable differential analysis against outbound network flows of different virtual machines (VMs). Our framework is tightly coupled with a new metric that first decomposes the timing data of network flows into a number of using the discrete wavelet-based multi-resolution transform (DWMT). It then applies the Kullback-Leibler divergence (KLD) to measure the variance among flow pairs. The appealing feature of our approach is that, compared with the existing anomaly detection approaches, it can detect most existing and some new stealthy TCs without legitimate traffic for modeling, even with the presence of noise and imprecise timekeeping mechanism in an SDN virtual environment. We implement our framework as a prototype system, OBSERVER, which can be dynamically deployed in an SDN environment. Empirical evaluation shows that our approach can efficiently detect TCs with a higher detection rate, lower latency, and negligible performance overhead compared to existing approaches.展开更多
Aiming at the problem that virtual machine information cannot be extracted incompletely, we extend the typical information extraction model of virtual machine and propose a perception mechanism in virtualization syste...Aiming at the problem that virtual machine information cannot be extracted incompletely, we extend the typical information extraction model of virtual machine and propose a perception mechanism in virtualization system based on storage covert channel to overcome the affection of the semantic gap. Taking advantage of undetectability of the covert channel, a secure channel is established between vip and virtual machine monitor to pass data directly. The vip machine can pass the control information of malicious process to virtual machine monitor by using the VMCALL instruction and shared memory. By parsing critical information in process control structure, virtual machine monitor can terminate the malicious processes. The test results show that the proposed mechanism can clear the user-level malicious programs in the virtual machine effectively and covertly. Meanwhile, its performance overhead is about the same as that of other mainstream monitoring mode.展开更多
In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN mod...In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN models are developed for modeling of path loss together with shadow fading(SF)and joint small scale channel parameters.The NN models can predict path loss plus SF and small scale channel parameters accurately compared with measurement at 26 GHz performed in an outdoor microcell.The time-varying path loss and small scale channel parameters generated by the NN models are proposed to replace the empirical path loss and channel parameter random numbers in GBSM-based framework to playback the measured channel and match with its environment.Moreover,the sparse feature of clusters,delay and angular spread,channel capacity are investigated by a virtual array measurement at 28 GHz in a large waiting hall.展开更多
Co-residency of virtual machines(VMs) of different tenants on the same physical platform would possibly lead to cross-VM side-channel attacks in the cloud. While most of current countermeasures fail for real or immedi...Co-residency of virtual machines(VMs) of different tenants on the same physical platform would possibly lead to cross-VM side-channel attacks in the cloud. While most of current countermeasures fail for real or immediate deployment due to their requirement for modification of virtualization structure, we adopt dynamic migration, an inherent mechanism of the cloud platform, as a general defense against this kind of threats. To this end, we first set up a unified practical information leakage model which shows the factors affecting side channels and describes the way they influence the damage due to side-channel attacks. Since migration is adopted to limit the time duration of co-residency, we envision this defense as an optimization problem by setting up an Integer Linear Programming(ILP) to calculate optimal migration strategy, which is intractable due to high computational complexity. Therefore, we approximate the ILP with a baseline genetic algorithm, which is further improved for its optimality and scalability. Experimental results show that our migration-based defense can not only provide excellent security guarantees and affordable performance cost in both theoretical simulation and practical cloud environment, but also achieve better optimality and scalability than previous countermeasures.展开更多
In this paper,a massive multiple input multiple output(MIMO)channel measurement campaign with two setups is conducted in an indoor lobby environment.In the first setup,two types of 256-element virtual uniform rectangu...In this paper,a massive multiple input multiple output(MIMO)channel measurement campaign with two setups is conducted in an indoor lobby environment.In the first setup,two types of 256-element virtual uniform rectangular arrays(URAs),i.e.,the 4×64 virtual URA and the 64×4 virtual URA are used.The carrier frequency is 11 GHz;in the second setup,measurements are performed at 4,6,11,13,15,18 GHz at two different user locations.The channel characterization is presented by investigating the typical channel parameters,including average power delay profile(APDP),K factor,root mean square(RMS)delay spread,and coherence bandwidth.Moreover,the channel characteristics in angular domain are investigated by applying the space-alternating generalized expectation-maximization(SAGE)algorithm.The extracted multipath components(MPCs)are preliminarily clustered by visual inspection,and related to the interacting objects(IOs)in physical environment.Multipath structures at multiple frequency bands are examined.Direction spread of departure is estimated to evaluate the directional dispersion at the base station(BS)side.The results in this paper can help to reveal the propagation mechanisms in massive MIMO channels,and provide a foundation for the design and application of the practical massive MIMO system.展开更多
The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex vi...The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark.展开更多
This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean squar...This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean square error (MSE) of two interpolators is theoretically derived for the general case. The equally spaced pilot arrangement is proposed as a special platform for these two time interpolators. Based on this proposed platform, the MSE of two time interpolators at the virtual pilot tones is derived analytically;moreover, the MSE of per channel estimator at the entire OFDM symbol based on per time interpolator is also derived. The effectiveness of the theoretical analysis is demonstrated by numerical simulation in both the time-invariant frequency-selective channel and the time varying frequency-selective channel.展开更多
容错路由算法是确保片上网络(network on chip, NoC)可靠性的主要方法,然而多故障点的绕行容错往往会导致网络负载不均衡及网络时延增大,为了解决这个问题提出了一种多故障点的无虚通道绕行容错路由算法。算法依赖于内建自测试(built-in...容错路由算法是确保片上网络(network on chip, NoC)可靠性的主要方法,然而多故障点的绕行容错往往会导致网络负载不均衡及网络时延增大,为了解决这个问题提出了一种多故障点的无虚通道绕行容错路由算法。算法依赖于内建自测试(built-in self-test, BIST)技术获取故障区域的位置信息,继而传输到部分节点的故障存储器中。通过数据包在X维度和Y维度遇到故障区域的情况分别采用了不同的绕行策略,且无死锁特性。在8×8的2D Mesh中,相比于参考的算法,在故障区域大小横向扩展为2×2,2×3,2×4的情况下,饱和注入率分别提高了18.75%,30.23%,12.85%,并且均衡了故障区域周围的网络负载。通过周期精确的仿真模拟器实验表明,随着故障区域的横纵扩展,所提算法有效地减少了网络时延,提高了饱和注入率。展开更多
基金Supported by the National Natural Science Foundation of China(No.60496311).
文摘This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slow fading channels, random beamforming is adopted. Random beamforming matrix exploiting virtual channel representation is constructed, which can match the channel matrix of the desired user better. Sirnultaneously, adaptive coded modulation is applied to each sub-channel of the selected user to improve the system performance further.
基金supported by the National Natural Science Foundation of China (60976020)
文摘In order to improve the network performance furthermore, a routing algorithm for 2D-Torus is investigated from the standpoint of load balance for virtual channels. The 2D-Torus network is divided into two virtual networks and each physical channel is split into three virtual channels. A novel virtual channel allocation policy and a routing algorithm are proposed, in which traffic load is distributed to those three virtual channels in a more load-balanced manner by introducing a random parameter. Simulations of the proposed algorithm are developed with a SystemC-based test bench. The results show that compared with the negative first for Torus networks (NF-T) algorithm, the proposed algorithm can achieve better performance in terms of network latency and throughput under different traffic patterns. It also shows that a routing algorithm with load balance for virtual channels can significantly improve the network performance furthermore.
文摘In wormhole meshes, a reliable routing is supposed to be deadlock-free and fault-tolerant. Many routing algorithms are able to tolerate a large number of faults enclosed by rectangular blocks or special convex, none of them, however, is capable of handling two convex fault regions with distance two by using only two virtual networks. In this paper, a fault-tolerant wormhole routing algorithm is presented to tolerate the disjointed convex faulty regions with distance two or no less, which do not contain any nonfaulty nodes and do not prohibit any routing as long as nodes outside faulty regions are connected in the mesh network. The processors' overlapping along the boundaries of different fault regions is allowed. The proposed algorithm, which routes the messages by X-Y routing algorithm in fault-free region, can tolerate convex fault-connected regions with only two virtual channels per physical channel, and is deadlock- and livelock-free. The proposed algorithm can be easily extended to adaptive routing.
基金Fujian Province Education Department(No.JAT170470)in part by the National Nature Science Foundation of China(No.61501041)+1 种基金in part by the Open Foundation of State Key Laboratory(No.ISN19-19)in part by the Ministry of Science and Technology,Taiwan,China(No.MOST 104-2221-E-030-004-MY2,MOST 108-2221-E-030-002).
文摘This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(VCs)in the environment of the number of receive antennas being no less than that of transmit antennas.The VCs will cause a rank deficiency problem in computing the subspace information.With the subcarrier mapping matrix,the received signal is simplified to remove the rank deficiency.We use the RIS scheme to generate many times of equivalent symbols so the channel identification can converge with few received OFDM blocks.The RIS scheme will convert the white noise into non-white noise.With the Cholesky factorization,a noise whitening technique is developed to turn the non-white noise back to white noise.We further analyze the necessary conditions of identifiability of channel estimation.Simulations are performed to show the superiority of the proposed method.
文摘The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement method for MIMO OFDM systems under time-varying channels with the guard band. The time-varying channel is described by complex exponential basis expansion model (BEM). We discuss the least square (LS) channel estimation to obtain the minimum mean square error (MSE) and derive the pilot allocation that can satisfy the minimum MSE with regard to guard band in time-varying channels. It is shown that optimal pilot clusters can distribute non-uniformly in frequency domain and minimize the MSE. We generalize our scheme over G OFDM symbols and compare it with comb pilots. It is demonstrated that the proposed approach is more effective than previous work. Simulation results validate our theoretical analysis.
文摘Despite extensive research, timing channels (TCs) are still known as a principal category of threats that aim to leak and transmit information by perturbing the timing or ordering of events. Existing TC detection approaches use either signature-based approaches to detect known TCs or anomaly-based approach by modeling the legitimate network traffic in order to detect unknown TCs. Un-fortunately, in a software-defined networking (SDN) environment, most existing TC detection approaches would fail due to factors such as volatile network traffic, imprecise timekeeping mechanisms, and dynamic network topology. Furthermore, stealthy TCs can be designed to mimic the legitimate traffic pattern and thus evade anomalous TC detection. In this paper, we overcome the above challenges by presenting a novel framework that harnesses the advantages of elastic re-sources in the cloud. In particular, our framework dynamically configures SDN to enable/disable differential analysis against outbound network flows of different virtual machines (VMs). Our framework is tightly coupled with a new metric that first decomposes the timing data of network flows into a number of using the discrete wavelet-based multi-resolution transform (DWMT). It then applies the Kullback-Leibler divergence (KLD) to measure the variance among flow pairs. The appealing feature of our approach is that, compared with the existing anomaly detection approaches, it can detect most existing and some new stealthy TCs without legitimate traffic for modeling, even with the presence of noise and imprecise timekeeping mechanism in an SDN virtual environment. We implement our framework as a prototype system, OBSERVER, which can be dynamically deployed in an SDN environment. Empirical evaluation shows that our approach can efficiently detect TCs with a higher detection rate, lower latency, and negligible performance overhead compared to existing approaches.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2009AA012200)Henan Province Science and Technology Funding Projects ( SP09JH11158)
文摘Aiming at the problem that virtual machine information cannot be extracted incompletely, we extend the typical information extraction model of virtual machine and propose a perception mechanism in virtualization system based on storage covert channel to overcome the affection of the semantic gap. Taking advantage of undetectability of the covert channel, a secure channel is established between vip and virtual machine monitor to pass data directly. The vip machine can pass the control information of malicious process to virtual machine monitor by using the VMCALL instruction and shared memory. By parsing critical information in process control structure, virtual machine monitor can terminate the malicious processes. The test results show that the proposed mechanism can clear the user-level malicious programs in the virtual machine effectively and covertly. Meanwhile, its performance overhead is about the same as that of other mainstream monitoring mode.
基金supported by the National Nature Science Foundation of China(NSFC)under grant No.61771194supported by Key Program of Beijing Municipal Natural Science Foundation with No.17L20052
文摘In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN models are developed for modeling of path loss together with shadow fading(SF)and joint small scale channel parameters.The NN models can predict path loss plus SF and small scale channel parameters accurately compared with measurement at 26 GHz performed in an outdoor microcell.The time-varying path loss and small scale channel parameters generated by the NN models are proposed to replace the empirical path loss and channel parameter random numbers in GBSM-based framework to playback the measured channel and match with its environment.Moreover,the sparse feature of clusters,delay and angular spread,channel capacity are investigated by a virtual array measurement at 28 GHz in a large waiting hall.
基金supported by the National Key Research and Development Program of China (2018YFB0804004)the Foundation of the National Natural Science Foundation of China (61602509)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (61521003)the Key Technologies Research and Development Program of Henan Province of China (172102210615)
文摘Co-residency of virtual machines(VMs) of different tenants on the same physical platform would possibly lead to cross-VM side-channel attacks in the cloud. While most of current countermeasures fail for real or immediate deployment due to their requirement for modification of virtualization structure, we adopt dynamic migration, an inherent mechanism of the cloud platform, as a general defense against this kind of threats. To this end, we first set up a unified practical information leakage model which shows the factors affecting side channels and describes the way they influence the damage due to side-channel attacks. Since migration is adopted to limit the time duration of co-residency, we envision this defense as an optimization problem by setting up an Integer Linear Programming(ILP) to calculate optimal migration strategy, which is intractable due to high computational complexity. Therefore, we approximate the ILP with a baseline genetic algorithm, which is further improved for its optimality and scalability. Experimental results show that our migration-based defense can not only provide excellent security guarantees and affordable performance cost in both theoretical simulation and practical cloud environment, but also achieve better optimality and scalability than previous countermeasures.
基金supported in part by the National Key Research and Development Program of China under Grant 2016YFE0200900 and 2018YFF0212103in part by NSFC under Grant 61725101, 61771037, 6181101396, and U1834210+4 种基金in part by the Beijing Natural Science Foundation under Grant 4182047 and L172020in part by the Fundamental research funds for the central universities under Grant 2017RC031 and Grant 2018JBM301in part by the Major projects of Beijing Municipal Science and Technology Commission under Grant Z181100003218010in part by the State Key Lab of Rail Traffic Control and Safety under Grant 2017JBM332, RCS2018ZZ007, and Grant RCS2018ZT014in part by the Teaching Reform Project under Grant 134496522
文摘In this paper,a massive multiple input multiple output(MIMO)channel measurement campaign with two setups is conducted in an indoor lobby environment.In the first setup,two types of 256-element virtual uniform rectangular arrays(URAs),i.e.,the 4×64 virtual URA and the 64×4 virtual URA are used.The carrier frequency is 11 GHz;in the second setup,measurements are performed at 4,6,11,13,15,18 GHz at two different user locations.The channel characterization is presented by investigating the typical channel parameters,including average power delay profile(APDP),K factor,root mean square(RMS)delay spread,and coherence bandwidth.Moreover,the channel characteristics in angular domain are investigated by applying the space-alternating generalized expectation-maximization(SAGE)algorithm.The extracted multipath components(MPCs)are preliminarily clustered by visual inspection,and related to the interacting objects(IOs)in physical environment.Multipath structures at multiple frequency bands are examined.Direction spread of departure is estimated to evaluate the directional dispersion at the base station(BS)side.The results in this paper can help to reveal the propagation mechanisms in massive MIMO channels,and provide a foundation for the design and application of the practical massive MIMO system.
基金supported in part by Open Foundation of State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2014B009)Fundamental Research Funds for the Central Universities (Grant Nos. N130817002, N150401002)+1 种基金Foundation of the Education Department of Liaoning Province (Grant No. L2014089)National Natural Science Foundation of China (Grant Nos. 61302070, 61401082, 61471109, 61502075, 91438110)
文摘The pursuit of the higher performance mobile communications forces the emergence of the fifth generation mobile communication(5G). 5G network, integrating wireless and wired domain, can be qualified for the complex virtual network work oriented to the cross-domain requirement. In this paper, we focus on the multi-domain virtual network embedding in a heterogeneous 5G network infrastructure, which facilitates the resource sharing for diverse-function demands from fixed/mobile end users. We proposed the mathematical ILP model for this problem.And based on the layered-substrate-resource auxiliary graph and an effective six-quadrant service-type-judgment method, 5G embedding demands can be classified accurately to match different user access densities. A collection of novel heuristic algorithms of virtual 5G network embedding are proposed. A great deal of numerical simulation results testified that our algorithm performed better in terms of average blocking rate, routing latency and wireless/wired resource utilization, compared with the benchmark.
文摘This paper analyzes and compares two time interpolators, i.e., time replica and time linear interpolator, for pilot aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The mean square error (MSE) of two interpolators is theoretically derived for the general case. The equally spaced pilot arrangement is proposed as a special platform for these two time interpolators. Based on this proposed platform, the MSE of two time interpolators at the virtual pilot tones is derived analytically;moreover, the MSE of per channel estimator at the entire OFDM symbol based on per time interpolator is also derived. The effectiveness of the theoretical analysis is demonstrated by numerical simulation in both the time-invariant frequency-selective channel and the time varying frequency-selective channel.