What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reas...What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reasons have made video object detection(VID)a growing area of research in recent years.Video object detection can be used for various healthcare applications,such as detecting and tracking tumors in medical imaging,monitoring the movement of patients in hospitals and long-term care facilities,and analyzing videos of surgeries to improve technique and training.Additionally,it can be used in telemedicine to help diagnose and monitor patients remotely.Existing VID techniques are based on recurrent neural networks or optical flow for feature aggregation to produce reliable features which can be used for detection.Some of those methods aggregate features on the full-sequence level or from nearby frames.To create feature maps,existing VID techniques frequently use Convolutional Neural Networks(CNNs)as the backbone network.On the other hand,Vision Transformers have outperformed CNNs in various vision tasks,including object detection in still images and image classification.We propose in this research to use Swin-Transformer,a state-of-the-art Vision Transformer,as an alternative to CNN-based backbone networks for object detection in videos.The proposed architecture enhances the accuracy of existing VID methods.The ImageNet VID and EPIC KITCHENS datasets are used to evaluate the suggested methodology.We have demonstrated that our proposed method is efficient by achieving 84.3%mean average precision(mAP)on ImageNet VID using less memory in comparison to other leading VID techniques.The source code is available on the website https://github.com/amaharek/SwinVid.展开更多
Video camouflaged object detection(VCOD)has become a fundamental task in computer vision that has attracted significant attention in recent years.Unlike image camouflaged object detection(ICOD),VCOD not only requires ...Video camouflaged object detection(VCOD)has become a fundamental task in computer vision that has attracted significant attention in recent years.Unlike image camouflaged object detection(ICOD),VCOD not only requires spatial cues but also needs motion cues.Thus,effectively utilizing spatiotemporal information is crucial for generating accurate segmentation results.Current VCOD methods,which typically focus on exploring motion representation,often ineffectively integrate spatial and motion features,leading to poor performance in diverse scenarios.To address these issues,we design a novel spatiotemporal network with an encoder-decoder structure.During the encoding stage,an adjacent space-time memory module(ASTM)is employed to extract high-level temporal features(i.e.,motion cues)from the current frame and its adjacent frames.In the decoding stage,a selective space-time aggregation module is introduced to efficiently integrate spatial and temporal features.Additionally,a multi-feature fusion module is developed to progressively refine the rough prediction by utilizing the information provided by multiple types of features.Furthermore,we incorporate multi-task learning into the proposed network to obtain more accurate predictions.Experimental results show that the proposed method outperforms existing cutting-edge baselines on VCOD benchmarks.展开更多
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com...Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet.展开更多
Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from th...Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods.展开更多
Object detection is one of the hottest research directions in computer vision,has already made impressive progress in academia,and has many valuable applications in the industry.However,the mainstream detection method...Object detection is one of the hottest research directions in computer vision,has already made impressive progress in academia,and has many valuable applications in the industry.However,the mainstream detection methods still have two shortcomings:(1)even a model that is well trained using large amounts of data still cannot generally be used across different kinds of scenes;(2)once a model is deployed,it cannot autonomously evolve along with the accumulated unlabeled scene data.To address these problems,and inspired by visual knowledge theory,we propose a novel scene-adaptive evolution unsupervised video object detection algorithm that can decrease the impact of scene changes through the concept of object groups.We first extract a large number of object proposals from unlabeled data through a pre-trained detection model.Second,we build the visual knowledge dictionary of object concepts by clustering the proposals,in which each cluster center represents an object prototype.Third,we look into the relations between different clusters and the object information of different groups,and propose a graph-based group information propagation strategy to determine the category of an object concept,which can effectively distinguish positive and negative proposals.With these pseudo labels,we can easily fine-tune the pretrained model.The effectiveness of the proposed method is verified by performing different experiments,and the significant improvements are achieved.展开更多
Previous video object segmentation approachesmainly focus on simplex solutions linking appearance and motion,limiting effective feature collaboration between these two cues.In this work,we study a novel and efficient ...Previous video object segmentation approachesmainly focus on simplex solutions linking appearance and motion,limiting effective feature collaboration between these two cues.In this work,we study a novel and efficient full-duplex strategy network(FSNet)to address this issue,by considering a better mutual restraint scheme linking motion and appearance allowing exploitation of cross-modal features from the fusion and decoding stage.Specifically,we introduce a relational cross-attention module(RCAM)to achieve bidirectional message propagation across embedding sub-spaces.To improve the model’s robustness and update inconsistent features from the spatiotemporal embeddings,we adopt a bidirectional purification module after the RCAM.Extensive experiments on five popular benchmarks show that our FSNet is robust to various challenging scenarios(e.g.,motion blur and occlusion),and compares well to leading methods both for video object segmentation and video salient object detection.The project is publicly available at https://github.com/GewelsJI/FSNet.展开更多
Underwater robotic operation usually requires visual perception(e.g.,object detection and tracking),but underwater scenes have poor visual quality and represent a special domain which can affect the accuracy of visual...Underwater robotic operation usually requires visual perception(e.g.,object detection and tracking),but underwater scenes have poor visual quality and represent a special domain which can affect the accuracy of visual perception.In addition,detection continuity and stability are important for robotic perception,but the commonly used static accuracy based evaluation(i.e.,average precision)is insufficient to reflect detector performance across time.In response to these two problems,we present a design for a novel robotic visual perception framework.First,we generally investigate the relationship between a quality-diverse data domain and visual restoration in detection performance.As a result,although domain quality has an ignorable effect on within-domain detection accuracy,visual restoration is beneficial to detection in real sea scenarios by reducing the domain shift.Moreover,non-reference assessments are proposed for detection continuity and stability based on object tracklets.Further,online tracklet refinement is developed to improve the temporal performance of detectors.Finally,combined with visual restoration,an accurate and stable underwater robotic visual perception framework is established.Small-overlap suppression is proposed to extend video object detection(VID)methods to a single-object tracking task,leading to the flexibility to switch between detection and tracking.Extensive experiments were conducted on the ImageNet VID dataset and real-world robotic tasks to verify the correctness of our analysis and the superiority of our proposed approaches.The codes are available at https://github.com/yrqs/VisPerception.展开更多
文摘What causes object detection in video to be less accurate than it is in still images?Because some video frames have degraded in appearance from fast movement,out-of-focus camera shots,and changes in posture.These reasons have made video object detection(VID)a growing area of research in recent years.Video object detection can be used for various healthcare applications,such as detecting and tracking tumors in medical imaging,monitoring the movement of patients in hospitals and long-term care facilities,and analyzing videos of surgeries to improve technique and training.Additionally,it can be used in telemedicine to help diagnose and monitor patients remotely.Existing VID techniques are based on recurrent neural networks or optical flow for feature aggregation to produce reliable features which can be used for detection.Some of those methods aggregate features on the full-sequence level or from nearby frames.To create feature maps,existing VID techniques frequently use Convolutional Neural Networks(CNNs)as the backbone network.On the other hand,Vision Transformers have outperformed CNNs in various vision tasks,including object detection in still images and image classification.We propose in this research to use Swin-Transformer,a state-of-the-art Vision Transformer,as an alternative to CNN-based backbone networks for object detection in videos.The proposed architecture enhances the accuracy of existing VID methods.The ImageNet VID and EPIC KITCHENS datasets are used to evaluate the suggested methodology.We have demonstrated that our proposed method is efficient by achieving 84.3%mean average precision(mAP)on ImageNet VID using less memory in comparison to other leading VID techniques.The source code is available on the website https://github.com/amaharek/SwinVid.
文摘Video camouflaged object detection(VCOD)has become a fundamental task in computer vision that has attracted significant attention in recent years.Unlike image camouflaged object detection(ICOD),VCOD not only requires spatial cues but also needs motion cues.Thus,effectively utilizing spatiotemporal information is crucial for generating accurate segmentation results.Current VCOD methods,which typically focus on exploring motion representation,often ineffectively integrate spatial and motion features,leading to poor performance in diverse scenarios.To address these issues,we design a novel spatiotemporal network with an encoder-decoder structure.During the encoding stage,an adjacent space-time memory module(ASTM)is employed to extract high-level temporal features(i.e.,motion cues)from the current frame and its adjacent frames.In the decoding stage,a selective space-time aggregation module is introduced to efficiently integrate spatial and temporal features.Additionally,a multi-feature fusion module is developed to progressively refine the rough prediction by utilizing the information provided by multiple types of features.Furthermore,we incorporate multi-task learning into the proposed network to obtain more accurate predictions.Experimental results show that the proposed method outperforms existing cutting-edge baselines on VCOD benchmarks.
基金funded by the Natural Science Foundation China(NSFC)under Grant No.62203192.
文摘Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet.
基金supported in part by the CAMS Innovation Fund for Medical Sciences,China(No.2019-I2M5-016)National Natural Science Foundation of China(No.62172246)+1 种基金the Youth Innovation and Technology Support Plan of Colleges and Universities in Shandong Province,China(No.2021KJ062)National Science Foundation of USA(Nos.IIS-1715985 and IIS1812606).
文摘Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods.
基金Project supported by the National Key R&D Program of China(No.2020AAA010400X)and the Hikvision Open Fund,China。
文摘Object detection is one of the hottest research directions in computer vision,has already made impressive progress in academia,and has many valuable applications in the industry.However,the mainstream detection methods still have two shortcomings:(1)even a model that is well trained using large amounts of data still cannot generally be used across different kinds of scenes;(2)once a model is deployed,it cannot autonomously evolve along with the accumulated unlabeled scene data.To address these problems,and inspired by visual knowledge theory,we propose a novel scene-adaptive evolution unsupervised video object detection algorithm that can decrease the impact of scene changes through the concept of object groups.We first extract a large number of object proposals from unlabeled data through a pre-trained detection model.Second,we build the visual knowledge dictionary of object concepts by clustering the proposals,in which each cluster center represents an object prototype.Third,we look into the relations between different clusters and the object information of different groups,and propose a graph-based group information propagation strategy to determine the category of an object concept,which can effectively distinguish positive and negative proposals.With these pseudo labels,we can easily fine-tune the pretrained model.The effectiveness of the proposed method is verified by performing different experiments,and the significant improvements are achieved.
基金This work was supported by the National Natural Science Foundation of China(62176169,61703077,and 62102207).
文摘Previous video object segmentation approachesmainly focus on simplex solutions linking appearance and motion,limiting effective feature collaboration between these two cues.In this work,we study a novel and efficient full-duplex strategy network(FSNet)to address this issue,by considering a better mutual restraint scheme linking motion and appearance allowing exploitation of cross-modal features from the fusion and decoding stage.Specifically,we introduce a relational cross-attention module(RCAM)to achieve bidirectional message propagation across embedding sub-spaces.To improve the model’s robustness and update inconsistent features from the spatiotemporal embeddings,we adopt a bidirectional purification module after the RCAM.Extensive experiments on five popular benchmarks show that our FSNet is robust to various challenging scenarios(e.g.,motion blur and occlusion),and compares well to leading methods both for video object segmentation and video salient object detection.The project is publicly available at https://github.com/GewelsJI/FSNet.
基金Project supported by the National Natural Science Foundation of China(Nos.61633004,61725305,and 62073196)the S&T Program of Hebei Province,China(No.F2020203037)。
文摘Underwater robotic operation usually requires visual perception(e.g.,object detection and tracking),but underwater scenes have poor visual quality and represent a special domain which can affect the accuracy of visual perception.In addition,detection continuity and stability are important for robotic perception,but the commonly used static accuracy based evaluation(i.e.,average precision)is insufficient to reflect detector performance across time.In response to these two problems,we present a design for a novel robotic visual perception framework.First,we generally investigate the relationship between a quality-diverse data domain and visual restoration in detection performance.As a result,although domain quality has an ignorable effect on within-domain detection accuracy,visual restoration is beneficial to detection in real sea scenarios by reducing the domain shift.Moreover,non-reference assessments are proposed for detection continuity and stability based on object tracklets.Further,online tracklet refinement is developed to improve the temporal performance of detectors.Finally,combined with visual restoration,an accurate and stable underwater robotic visual perception framework is established.Small-overlap suppression is proposed to extend video object detection(VID)methods to a single-object tracking task,leading to the flexibility to switch between detection and tracking.Extensive experiments were conducted on the ImageNet VID dataset and real-world robotic tasks to verify the correctness of our analysis and the superiority of our proposed approaches.The codes are available at https://github.com/yrqs/VisPerception.