期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Lip-Audio Modality Fusion for Deep Forgery Video Detection
1
作者 Yong Liu Zhiyu Wang +3 位作者 Shouling Ji Daofu Gong Lanxin Cheng Ruosi Cheng 《Computers, Materials & Continua》 2025年第2期3499-3515,共17页
In response to the problem of traditional methods ignoring audio modality tampering, this study aims to explore an effective deep forgery video detection technique that improves detection precision and reliability by ... In response to the problem of traditional methods ignoring audio modality tampering, this study aims to explore an effective deep forgery video detection technique that improves detection precision and reliability by fusing lip images and audio signals. The main method used is lip-audio matching detection technology based on the Siamese neural network, combined with MFCC (Mel Frequency Cepstrum Coefficient) feature extraction of band-pass filters, an improved dual-branch Siamese network structure, and a two-stream network structure design. Firstly, the video stream is preprocessed to extract lip images, and the audio stream is preprocessed to extract MFCC features. Then, these features are processed separately through the two branches of the Siamese network. Finally, the model is trained and optimized through fully connected layers and loss functions. The experimental results show that the testing accuracy of the model in this study on the LRW (Lip Reading in the Wild) dataset reaches 92.3%;the recall rate is 94.3%;the F1 score is 93.3%, significantly better than the results of CNN (Convolutional Neural Networks) and LSTM (Long Short-Term Memory) models. In the validation of multi-resolution image streams, the highest accuracy of dual-resolution image streams reaches 94%. Band-pass filters can effectively improve the signal-to-noise ratio of deep forgery video detection when processing different types of audio signals. The real-time processing performance of the model is also excellent, and it achieves an average score of up to 5 in user research. These data demonstrate that the method proposed in this study can effectively fuse visual and audio information in deep forgery video detection, accurately identify inconsistencies between video and audio, and thus verify the effectiveness of lip-audio modality fusion technology in improving detection performance. 展开更多
关键词 Deep forgery video detection lip-audio modality fusion mel frequency cepstrum coefficient siamese neural network band-pass filter
在线阅读 下载PDF
Multiple Forgery Detection in Video Using Convolution Neural Network
2
作者 Vinay Kumar Vineet Kansal Manish Gaur 《Computers, Materials & Continua》 SCIE EI 2022年第10期1347-1364,共18页
With the growth of digital media data manipulation in today’s era due to the availability of readily handy tampering software,the authenticity of records is at high risk,especially in video.There is a dire need to de... With the growth of digital media data manipulation in today’s era due to the availability of readily handy tampering software,the authenticity of records is at high risk,especially in video.There is a dire need to detect such problem and do the necessary actions.In this work,we propose an approach to detect the interframe video forgery utilizing the deep features obtained from the parallel deep neural network model and thorough analytical computations.The proposed approach only uses the deep features extracted from the CNN model and then applies the conventional mathematical approach to these features to find the forgery in the video.This work calculates the correlation coefficient from the deep features of the adjacent frames rather than calculating directly from the frames.We divide the procedure of forgery detection into two phases–video forgery detection and video forgery classification.In video forgery detection,this approach detect input video is original or tampered.If the video is not original,then the video is checked in the next phase,which is video forgery classification.In the video forgery classification,method review the forged video for insertion forgery,deletion forgery,and also again check for originality.The proposed work is generalized and it is tested on two different datasets.The experimental results of our proposed model show that our approach can detect the forgery with the accuracy of 91%on VIFFD dataset,90%in TDTV dataset and classify the type of forgery–insertion and deletion with the accuracy of 82%on VIFFD dataset,86%on TDTV dataset.This work can helps in the analysis of original and tempered video in various domain. 展开更多
关键词 Digital forensic forgery detection video authentication video interframe forgery video processing deep learning
在线阅读 下载PDF
Authentication of Video Evidence for Forensic Investigation: A Case of Nigeria 被引量:1
3
作者 Beatrice O. Akumba Aamo Iorliam +2 位作者 Selumun Agber Emmanuel Odeh Okube Kenneth Dekera Kwaghtyo 《Journal of Information Security》 2021年第2期163-176,共14页
Video shreds of evidence are usually admissible in the court of law all over the world. However, individuals manipulate these videos to either defame or incriminate innocent people. Others indulge in video tampering t... Video shreds of evidence are usually admissible in the court of law all over the world. However, individuals manipulate these videos to either defame or incriminate innocent people. Others indulge in video tampering to falsely escape the wrath of the law against misconducts. One way impostors can forge these videos is through inter-frame video forgery. Thus, the integrity of such videos is under threat. This is because these digital forgeries seriously debase the credibility of video contents as being definite records of events. <span style="font-family:Verdana;">This leads to an increasing concern about the trustworthiness of video contents. Hence, it continues to affect the social and legal system, forensic investigations, intelligence services, and security and surveillance systems as the case may be. The problem of inter-frame video forgery is increasingly spontaneous as more video-editing software continues to emerge. These video editing tools can easily manipulate videos without leaving obvious traces and these tampered videos become viral. Alarmingly, even the beginner users of these editing tools can alter the contents of digital videos in a manner that renders them practically indistinguishable from the original content by mere observations. </span><span style="font-family:Verdana;">This paper, however, leveraged on the concept of correlation coefficients to produce a more elaborate and reliable inter-frame video detection to aid forensic investigations, especially in Nigeria. The model employed the use of the idea of a threshold to efficiently distinguish forged videos from authentic videos. A benchmark and locally manipulated video datasets were used to evaluate the proposed model. Experimentally, our approach performed better than the existing methods. The overall accuracy for all the evaluation metrics such as accuracy, recall, precision and F1-score was 100%. The proposed method implemented in the MATLAB programming language has proven to effectively detect inter-frame forgeries.</span> 展开更多
关键词 INTER-FRAME video forgery Correlation Coefficients Forensic Investigation Threshold
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部