The geometries of one-electron reduced/oxidized species ([TOP]-/[VOP] +) of vanadyl por- phyrin (VOP) have been calculated with PBE1PBE method. The results show that for both [VOP]- and [VOP]+ the ground states ...The geometries of one-electron reduced/oxidized species ([TOP]-/[VOP] +) of vanadyl por- phyrin (VOP) have been calculated with PBE1PBE method. The results show that for both [VOP]- and [VOP]+ the ground states are triplet, in which one of the two unpaired electron occupies the dxy orbital of the V atom while the other occupies the n-orbital of porphyrin ring. Thus both [VOP]- and [VOP]+ can be considered as n-radicals. The ground state of neutral VOP molecule is doublet with the unpaired electron occupying dxy orbital of V atom. In contract to the C4v symmetry of neutral VOP molecule, [VOP]- anion has a "rectangular" distorted C2v structure due to Jahn-Teller effect. The linear vibronic coupling constants for the Jahn-Teller active modes of [TOP]- were evaluated and the node patterns of frontier KS orbitals are used to explain the reason why the distortion occurs along specific modes. The ground state [VOP]+ has a porphyrin ring with pronounced bond length alternation due to pseudo-Jahn-Teller effect, causing its symmetry declined from C4v to Ca. The bond length alternation is well explained with the node patterns of re-constructed frontier KS orbitals.展开更多
Focusing on the mechanism of interfa-cial exciton dissociation in edge-on stacked ZnPc-F_(8)ZnPc aggregate,we employ the fragment particle-hole densities(FPHD)method to con-struct the Hamiltonian of diabatic states an...Focusing on the mechanism of interfa-cial exciton dissociation in edge-on stacked ZnPc-F_(8)ZnPc aggregate,we employ the fragment particle-hole densities(FPHD)method to con-struct the Hamiltonian of diabatic states and use the non-Markovian stochastic Schrödinger equation(NMSSE)to simulate the photo-in-duced dynamics processes.The re-sults show that aggregation effects have a significant impact on the interfacial exciton dissociation process.After photo-excita-tion,the excitons first preferentially delocalize and perform the charge transfer(CT)states in the pure ZnPc or F_(8)ZnPc aggregates within 100 fs.These‘intramolecular’CT states can easi-ly evolve into interfacial CT states by hopping electrons and holes in the intramolecular CT states across the interface.Compared with these exciton dissociation processes,the direct ex-citon dissociation into interfacial CT state is relatively slow due to the small electronic cou-pling and vibrational coherence between the locally excited state and the interfacial CT state.As the temperature rises and the vibronic coherence weakens,the direct dissociation rates are significantly enhanced.This investigation provides valuable insights for the design and opti-mization of high-performance organic photovoltaic devices.展开更多
We report the SERS enhancements of Raman forbidden surface modes of TiO<sub>2</sub> in different sized TiO<sub>2</sub> crystals. This current study utilizes the relationship between the vibroni...We report the SERS enhancements of Raman forbidden surface modes of TiO<sub>2</sub> in different sized TiO<sub>2</sub> crystals. This current study utilizes the relationship between the vibronic coupling and the degree of charge-transfer to explain the differences of Surface Enhanced Raman Scattering (SERS) enhancements. Our study shows a direct correlation between the degree of charge-transfer and vibronic coupling. This relationship suggests that charge-transfer between the N-719 dye and TiO<sub>2</sub> due to vibronic coupling plays a fundamental role in SERS enhancements. Furthermore, this study shows a strong dependence of the enhancements of the N-719 dye molecular modes to that of the surface modes. This indicates that the mechanism that governs the enhancements of the surface modes in TiO<sub>2</sub> crystals most likely also dictates the enhancements of the N-719 dyes.展开更多
Base pair mismatch has been regarded as the main source of DNA point mutations, where minor shortlived tautomers were usually involved. However, the detection and characterization of these unnatural species pose chall...Base pair mismatch has been regarded as the main source of DNA point mutations, where minor shortlived tautomers were usually involved. However, the detection and characterization of these unnatural species pose challenges to existing techniques. Here, by using systematic structural and ultrafast resonance Raman(RR) spectral analysis for the four possible conformers of guanine-cytosine base pairs, the prominent marker Raman bands were identified. We found that the hydrogen bonding vibrational region from 2300 cm^(-1) to 3700 cm^(-1) is ideal for the identification of these short live species. The marker bands provide direct evidence for the existence of the tautomer species, thus offering an effective strategy to detect the short-lived minor species. Ultrafast resonance Raman spectroscopy would be a powerful tool to provide direct evidence of critical dynamical details of complex systems involving protonation or tautomerization.展开更多
The heavy-atom effect of halogen(Br and I)has been widely employed for boosting spin-crossover in organic molecules,while recent investigation indicated halogen-substitution can also enhance fluorescence and even lead...The heavy-atom effect of halogen(Br and I)has been widely employed for boosting spin-crossover in organic molecules,while recent investigation indicated halogen-substitution can also enhance fluorescence and even lead to aggregation-induced emission(AIE).In this work,we investigated ultrafast excited state dynamics of a halogen-substituted model system,i.e.squaryliums NSQ-R(R=H,Cl,Br,I),by using femtosecond spectroscopy and theoretical approach.Fast external reorganization(Ex-re,~3 ps)and slow internal reorganization(In-re,5-20 ps)were observed,while quantitative fitting indicated halogen-substitution leads to a slower non-radiative S1→S0 decay(k_(NR)^(s))and subsequently enhanced fluorescence emitting.By analyzing the extracted k_(NR)^(s)within theoretical framework of non-radiative transition in the strong coupling regime,a plausible AIE mechanism of NSQs was revealed.Our work provides a clear picture on non-radiative dynamics of halogen-substituted squaryliums,which might be useful for future development of organic dyes.展开更多
文摘The geometries of one-electron reduced/oxidized species ([TOP]-/[VOP] +) of vanadyl por- phyrin (VOP) have been calculated with PBE1PBE method. The results show that for both [VOP]- and [VOP]+ the ground states are triplet, in which one of the two unpaired electron occupies the dxy orbital of the V atom while the other occupies the n-orbital of porphyrin ring. Thus both [VOP]- and [VOP]+ can be considered as n-radicals. The ground state of neutral VOP molecule is doublet with the unpaired electron occupying dxy orbital of V atom. In contract to the C4v symmetry of neutral VOP molecule, [VOP]- anion has a "rectangular" distorted C2v structure due to Jahn-Teller effect. The linear vibronic coupling constants for the Jahn-Teller active modes of [TOP]- were evaluated and the node patterns of frontier KS orbitals are used to explain the reason why the distortion occurs along specific modes. The ground state [VOP]+ has a porphyrin ring with pronounced bond length alternation due to pseudo-Jahn-Teller effect, causing its symmetry declined from C4v to Ca. The bond length alternation is well explained with the node patterns of re-constructed frontier KS orbitals.
基金supported by the National Natural Science Foundation of China(Nos.22033006,22173074,22473091, 92372105).
文摘Focusing on the mechanism of interfa-cial exciton dissociation in edge-on stacked ZnPc-F_(8)ZnPc aggregate,we employ the fragment particle-hole densities(FPHD)method to con-struct the Hamiltonian of diabatic states and use the non-Markovian stochastic Schrödinger equation(NMSSE)to simulate the photo-in-duced dynamics processes.The re-sults show that aggregation effects have a significant impact on the interfacial exciton dissociation process.After photo-excita-tion,the excitons first preferentially delocalize and perform the charge transfer(CT)states in the pure ZnPc or F_(8)ZnPc aggregates within 100 fs.These‘intramolecular’CT states can easi-ly evolve into interfacial CT states by hopping electrons and holes in the intramolecular CT states across the interface.Compared with these exciton dissociation processes,the direct ex-citon dissociation into interfacial CT state is relatively slow due to the small electronic cou-pling and vibrational coherence between the locally excited state and the interfacial CT state.As the temperature rises and the vibronic coherence weakens,the direct dissociation rates are significantly enhanced.This investigation provides valuable insights for the design and opti-mization of high-performance organic photovoltaic devices.
文摘We report the SERS enhancements of Raman forbidden surface modes of TiO<sub>2</sub> in different sized TiO<sub>2</sub> crystals. This current study utilizes the relationship between the vibronic coupling and the degree of charge-transfer to explain the differences of Surface Enhanced Raman Scattering (SERS) enhancements. Our study shows a direct correlation between the degree of charge-transfer and vibronic coupling. This relationship suggests that charge-transfer between the N-719 dye and TiO<sub>2</sub> due to vibronic coupling plays a fundamental role in SERS enhancements. Furthermore, this study shows a strong dependence of the enhancements of the N-719 dye molecular modes to that of the surface modes. This indicates that the mechanism that governs the enhancements of the surface modes in TiO<sub>2</sub> crystals most likely also dictates the enhancements of the N-719 dyes.
基金the financial support from the National Key Research and Development Program of China(No.2019YFA0708703)the National Natural Science Foundation of China(NSFC,No.21773309)+3 种基金the High-level Science Foundation of Qingdao Agricultural University(No.663/1114351)the Hefei National Laboratory for Physical Sciences at the Microscale(No.KF2020004)Xiangyang Science and Technology Research and Development(No.2020YL09)Hubei University of Arts and Science(Nos.HLOM222003,2020kypytd002)。
文摘Base pair mismatch has been regarded as the main source of DNA point mutations, where minor shortlived tautomers were usually involved. However, the detection and characterization of these unnatural species pose challenges to existing techniques. Here, by using systematic structural and ultrafast resonance Raman(RR) spectral analysis for the four possible conformers of guanine-cytosine base pairs, the prominent marker Raman bands were identified. We found that the hydrogen bonding vibrational region from 2300 cm^(-1) to 3700 cm^(-1) is ideal for the identification of these short live species. The marker bands provide direct evidence for the existence of the tautomer species, thus offering an effective strategy to detect the short-lived minor species. Ultrafast resonance Raman spectroscopy would be a powerful tool to provide direct evidence of critical dynamical details of complex systems involving protonation or tautomerization.
基金support by the National Key R&D Program of China(Nos.2020YFA0714603 and 2020YFA0714604)。
文摘The heavy-atom effect of halogen(Br and I)has been widely employed for boosting spin-crossover in organic molecules,while recent investigation indicated halogen-substitution can also enhance fluorescence and even lead to aggregation-induced emission(AIE).In this work,we investigated ultrafast excited state dynamics of a halogen-substituted model system,i.e.squaryliums NSQ-R(R=H,Cl,Br,I),by using femtosecond spectroscopy and theoretical approach.Fast external reorganization(Ex-re,~3 ps)and slow internal reorganization(In-re,5-20 ps)were observed,while quantitative fitting indicated halogen-substitution leads to a slower non-radiative S1→S0 decay(k_(NR)^(s))and subsequently enhanced fluorescence emitting.By analyzing the extracted k_(NR)^(s)within theoretical framework of non-radiative transition in the strong coupling regime,a plausible AIE mechanism of NSQs was revealed.Our work provides a clear picture on non-radiative dynamics of halogen-substituted squaryliums,which might be useful for future development of organic dyes.