期刊文献+
共找到4,319篇文章
< 1 2 216 >
每页显示 20 50 100
Structural vibration control using nonlinear damping amplifier friction vibration absorbers
1
作者 S.CHOWDHURY S.ADHIKARI 《Applied Mathematics and Mechanics(English Edition)》 2025年第5期965-988,共24页
This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered ... This paper introduces damping amplifier friction vibration absorbers(DAFVAs),compound damping amplifier friction vibration absorbers(CDAFVAs),nested damping amplifier friction vibration absorbers(NDAFVAs),and levered damping amplifier friction vibration absorbers(LDAFVAs)for controlling the structural vibrations and addressing the limitations of conventional tuned mass dampers(TMDs)and frictiontuned mass dampers(FTMDs).The closed-form analytical solution for the optimized design parameters is obtained using the H_(2)and H_(∞)optimization approaches.The efficiency of the recently established closed-form equations for the optimal design parameters is confirmed by the analytical examination.The closed form formulas for the dynamic responses of the main structure and the vibration absorbers are derived using the transfer matrix formulations.The foundation is provided by the harmonic and random-white noise excitations.Moreover,the effectiveness of the innovative dampers has been validated through numerical analysis.The optimal DAFVAs,CDAFVAs,NDAFVAs,and LDAFVAs exhibit at least 30%lower vibration reduction capacity compared with the optimal TMD.To demonstrate the effectiveness of the damping amplification mechanism,the novel absorbers are compared with a conventional FTMD.The results show that the optimized novel absorbers achieve at least 91%greater vibration reduction than the FTMD.These results show how the suggested designs might strengthen the structure's resilience to dynamic loads. 展开更多
关键词 damping amplifier friction vibration absorber(DAFVA) compound damping amplifier friction vibration absorber(CDAFVA) nested damping amplifier friction vibration absorber(NDAFVA) levered damping amplifier friction vibration absorber(LDAFVA) H2 and H∞optimization approaches
在线阅读 下载PDF
Vibration safety assessment and parameter analysis of buried oil pipelines based on vibration isolation holes under strong surface impact 被引量:1
2
作者 Wang Guobo Mei Hua +4 位作者 Wang Jianning He Wei Yin Yao Zhai Yuxin Zuo Pengfei 《Earthquake Engineering and Engineering Vibration》 2025年第1期69-82,共14页
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri... Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads. 展开更多
关键词 vibration isolation hole buried oil pipeline strong surface impact vibration velocity vibration safety assessment
在线阅读 下载PDF
Vibration Transmission Characteristics of Shoe Sole Based on Mechanical Mobility and Vibration Transmissibility
3
作者 WU Xuyang LIU Xiaoying +2 位作者 HAO Yanhua LIU Changhuang HUANG Xianwei 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期175-186,共12页
It is particularly important to explore the response and transmission characteristics of shoe sole when exposed to foot-transmitted vibration(FTV)in daily life.In this study,based on mechanical mobility and vibration ... It is particularly important to explore the response and transmission characteristics of shoe sole when exposed to foot-transmitted vibration(FTV)in daily life.In this study,based on mechanical mobility and vibration transmissibility,the vibration response and transmission characteristics of ordinary sole and multi-cellular structure sole under three excitation modes were analyzed with finite element analysis.The analysis results of the ordinary sole are as follows:The distribution and transmission of vibration energy of ordinary sole are more related to the excitation position and mode-shape;the phalange region is more violent in vibration response to vibration and transmission of vibration.In addition,the analysis results of multi-cellular structure soles show that different types of multi-cellular structure soles have different effects on the equivalent mechanical mobility and the equivalent vibration transmissibility,among which Grid type has the greatest influence.So,this study can help prevent foot injury and provide guidance for the optimal design of the sole. 展开更多
关键词 vibration transmission characteristics mechanical mobility vibration transmissibility vibration energy shoe sole
原文传递
Enhanced magnetic properties in a Fe-based amorphous alloy via ultrasonic vibration rapid processing 被引量:1
4
作者 Hong-Zhen Li Sajad Sohrabi +4 位作者 Xin Li Lu-Yao Li Jiang Ma Huan-Lin Peng Chao Yang 《Rare Metals》 2025年第4期2853-2860,共8页
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni... In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon. 展开更多
关键词 enhancing soft magnetic properties soft magnetic properties physical propertieshereinwe Fe based amorphous alloy amorphous alloy ribbon ultrasonic vibration rapid processing uvrp which Fe clusters ultrasonic vibration rapid processing
原文传递
Research on vibration response and vibration attenuation model of comprehensive transportation hub under multiple-source excitations
5
作者 Wu Qiaoyun Zhang Qingdong +2 位作者 Sun Jubo Chen Xuyong Xie Weiping 《Earthquake Engineering and Engineering Vibration》 2025年第2期527-545,共19页
To investigate the vibration response of the comprehensive transportation hub structure under multiple-source excitations,an on-site vibration measurement was carried out at Wuhan Railway Station in China.The characte... To investigate the vibration response of the comprehensive transportation hub structure under multiple-source excitations,an on-site vibration measurement was carried out at Wuhan Railway Station in China.The characteristics of each floor vibration were obtained through the time domain and frequency domain analyses.Based on the vibration characteristic under multiple-source excitations,the proposed attenuation model was derived.In addition,a vibration comfort evaluation on the Wuhan Railway Station was conducted.The results show that the effect of the number of vibration sources on horizontal acceleration is more significant than that regarding vertical acceleration.When the structure is under the effects two vibration sources with different frequencies,a high-frequency vibration can amplify a low-frequency vibration.The derived attenuation model can precisely predict the vibration attenuation and reduce the subsequent vibration test workload.Based on the annoyance rate model result,the annoyance rate of Wuhan Railway Station is high,which is harmful to the staff of the station. 展开更多
关键词 comprehensive transportation hub multiple-source excitations Wuhan Railway Station vibration measurement vibration attenuation model comfort evaluation
在线阅读 下载PDF
An embedded piezoelectric actuator for active vibration control:Concept,modeling,simulation,and investigation
6
作者 Rui QI Liang WANG +3 位作者 Jiamei JIN Lusheng YUAN Ziyu SHEN Yuning GE 《Chinese Journal of Aeronautics》 2025年第4期244-256,共13页
Piezoelectric active vibration control holds paramount importance in space structures.An embedded piezoelectric actuator with a sandwich configuration is proposed,which enhances control accuracy by integrating various... Piezoelectric active vibration control holds paramount importance in space structures.An embedded piezoelectric actuator with a sandwich configuration is proposed,which enhances control accuracy by integrating various components.Firstly,the electromechanical coupling characteristics of the actuator are revealed,and the model is established.Secondly,the equivalent model of a cylindrical cantilever beam is investigated as the object,and the feasibility of the vibration control of the actuator is verified by simulation.Finally,the prototype comprised of two actuators,which respectively use the proposed embedded actuators for producing the vibration and suppressing the vibration,is developed,and the measurement system is constructed.Experimental results demonstrate the excellent control efficiency in two orthogonal directions,achieving a minimum vibration amplitude control of 0.00102 mm and a maximum vibration control of-42.74 d B.The integrated structure offers fast response,lightness,adaptability,and high control efficiency,which is conducive to enhancing the vibration control. 展开更多
关键词 Piezoelectric actuators vibration control Disturbance rejection Actuators Bending vibration
原文传递
Magneto-Electro-Elastic 3D Coupling in Free Vibrations of Layered Plates
7
作者 Salvatore Brischetto Domenico Cesare Tommaso Mondino 《Computers, Materials & Continua》 2025年第12期4491-4518,共28页
A three-dimensional(3D)analytical formulation is proposed to put together magnetic,electric and elastic fields to analyze the vibration modes of simply-supported layered piezo-electro-magnetic plates.The present 3D mo... A three-dimensional(3D)analytical formulation is proposed to put together magnetic,electric and elastic fields to analyze the vibration modes of simply-supported layered piezo-electro-magnetic plates.The present 3D model allows analyses for layered smart plates in both open-circuit and closed-circuit configurations.The secondorder differential equations written in the mixed curvilinear reference system govern the magneto-electro-elastic free vibration problem for multilayered plates.This set consists of the 3D equations of motion and the 3D divergence equations for the magnetic induction and electric displacement.Navier harmonic forms in the planar directions and the exponential matrix method in the transversal direction of the plate are applied to solve the second-order differential equations in terms of displacements.For these reasons,simply-supported boundary conditions are considered.Imposition of interlaminar continuity conditions on primary variables(displacements,magnetic potential,electric potential),and some secondary variables(transverse normal and transverse shear stresses,transverse normal magnetic induction/electric displacement)allows the implementation of the layer-wise approach.Assessments for both load boundary configurations are proposed in the results section to validate the present 3D approach.3D electro-elastic and 3D magneto-elastic coupling validations are performed separately considering different models from the open literature.A new benchmark involving a full magneto-electro-elastic coupling for multilayered plates is presented considering both load boundary configurations for different thickness ratios.For this benchmark,circular frequency values and related vibration modes through the transverse direction in terms of displacements,magnetic and electric potential,transverse normal magnetic induction/electric displacement are shown to visualize the magneto-electroelastic coupling and material and thickness layer effects.The present formulation has been entirely implemented in an academic Matlab(R2024a)code developed by the authors.In this paper,for the first time,the second-order differential equations governing the magneto-electro-elastic problem for the free vibration analysis of plates has been solved considering the mixed mode of harmonic forms and exponential matrix.The exponential matrix permits computing the secondary variable of the problem(stresses,electric displacement components and magnetic induction components)exactly,directly from constitutive and geometrical equations.In addition,the very simple and elegant formulation permits having a code with very low computational costs.The present manuscript aims to fill the void in open literature regarding reference 3D solutions for the free vibration analysis of magneto-electro-elastic plates. 展开更多
关键词 3D analytical formulation multilayered smart plates free vibration analyses vibration modes magnetoelectro-elastic coupling exponential matrix method layer wise approach
在线阅读 下载PDF
Experimental Study on Vortex-Induced Vibration of Underwater Manipulator Under Shear Flow
8
作者 Senliang Dai Derong Duan +3 位作者 Xin Liu Huifang Jin Hui Zhang Xuefeng Yang 《哈尔滨工程大学学报(英文版)》 2025年第5期959-969,共11页
The position deviation of the underwater manipulator generated by vortex-induced vibration(VIV)in the shear flow increases relative to that in the uniform flow.Thus,this study established an experimental platform to i... The position deviation of the underwater manipulator generated by vortex-induced vibration(VIV)in the shear flow increases relative to that in the uniform flow.Thus,this study established an experimental platform to investigate the vibration characteristics of the underwater manipulator under shear flow.The vibration response along the manipulator was obtained and compared with that in the uniform flow.Results indicated that the velocity,test height,and flow field were the main factors affecting the VIV of the underwater manipulator.With the increase in the reduced velocity(U_(r)),the dimensionless amplitudes increased rapidly in the in-line(IL)direction with a maximum of 0.13D.The vibration responses in the cross-flow(CF)and IL directions were concentrated at positions 2,3 and positions 1,2,with peak values of 0.46 and 0.54 mm under U_(r)=1.54,respectively.In addition,the vibration frequency increased with the reduction of velocity.The dimensionless dominant frequency in the CF and IL directions varied from 0.39-0.80 and 0.35-0.64,respectively.Moreover,the ratio of the CF and IL directions was close to 1 at a lower U_(r).The standard deviation of displacement initially increased and then decreased as the height of the test location increased.The single peak value of the standard deviation showed that VIV presented a single mode.Compared with the uniform flow,the maximum and average values of VIV displacement increased by 104%and 110%under the shear flow,respectively. 展开更多
关键词 Underwater manipulator Shear flow Vortex-induced vibration Spectral analysis vibration response
在线阅读 下载PDF
Vibration localization and reduction in plates via lightweight soft acoustic black hole and vibration absorbers
9
作者 Jian Xue Hong-Wei Ma Li-Qun Chen 《Acta Mechanica Sinica》 2025年第6期185-197,共13页
A lightweight composite resonator,consisting of a soft material acoustic black hole(SABH)and multiple vibration absorbers,is embedded in a plate to achieve localization and absorption of low-frequency vibration energy... A lightweight composite resonator,consisting of a soft material acoustic black hole(SABH)and multiple vibration absorbers,is embedded in a plate to achieve localization and absorption of low-frequency vibration energy.The combination of local and global admissible functions for displacement enhances the accuracy of the Ritz method in predicting vibration localization characteristics within the SABH domain.Utilizing soft materials for the SABH can reduce the mass and frequency of the composite resonator.Due to the lack of orthogonality between global vibration modes and localized modes,the low-frequency localized modes induced by the SABH are used to shape the initial global modes,thereby concentrating the global vibration of the plate in the SABH region.Consequently,the absorbers of the composite resonator only need to be a small fraction of the mass of the local SABH to achieve substantial vibration control of the host plate.This vibration localization strategy can significantly reduce the vibration amplitude of the host plate and enhance the effectiveness of lightweight absorbers in vibration reduction. 展开更多
关键词 vibration localization vibration absorber Binary material Ritz method Plate structure
原文传递
Vortex-induced vibration and galloping coupling by using a large-scale protrusion passive turbulence control in a confined pipeline for energy harvesting enhancement
10
作者 Jin-xia Li Ji Lin +1 位作者 Hong-jun Sun Hong-bing Ding 《Journal of Hydrodynamics》 2025年第4期698-711,共14页
This study addresses the challenge by introducing a piezoelectric energy harvester based on vortex-induced vibration(VIV)and galloping interactions.Experiments on an elastically mounted circular cylinder equipped with... This study addresses the challenge by introducing a piezoelectric energy harvester based on vortex-induced vibration(VIV)and galloping interactions.Experiments on an elastically mounted circular cylinder equipped with two small square rods(SSR)in a DN100 pipe were conducted to examine how the circumferential angle of the SSR impacts the vibration response of cylinder,revealing distinct interaction modes(VIV-only and VIV-galloping interaction).The results show that placing the SSR toward the bluff body’s trailing edge accelerates the onset of galloping at lower velocities.In particular,as the SSR angle is in the range ofθ=160°–180°,the fluid-structure interaction behavior deviates from prior open-flow studies.This difference is attributed to the influence of the pipe wall and is analyzed using the shear layer interaction mode theory.The relationship between SSR placement angles and fluid-induced vibration(FIV)characteristics across various fluid velocities was also mapped,with dynamic influences assessed using the Strouhal number and stability parameterΔS,helping to distinguish between interaction modes.Based on these findings,configurations withθ=50°–70°andθ=140°–150°are identified as preferable for enhanced power output,whereasθ=170°–180°is better suited for optimizing efficiency and stability.These results provide good insights into the design and optimization of pipeline energy harvesting systems for industrial applications. 展开更多
关键词 Flow-induced vibration(FIV) passive control vibration strengthening energy harvesting confined effect
原文传递
Nonlinear vibration of quasi-zero stiffness structure with piezoelectric harvester and RL-load:intra-well and inter-well oscillation modes under 1:1 internal resonance
11
作者 N.A.SAEED Y.Y.ELLABBAN +4 位作者 Lei HOU Haiming YI Shun ZHONG F.Z.DURAIHEM O.M.OMARA 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1451-1474,I0010,I0011,共26页
This study explores the nonlinear dynamics of a quasi-zero stiffness(QZS)vibration isolator coupled with a piezoelectric energy harvester connected to an RL-resonant circuit.The model of the system is formulated with ... This study explores the nonlinear dynamics of a quasi-zero stiffness(QZS)vibration isolator coupled with a piezoelectric energy harvester connected to an RL-resonant circuit.The model of the system is formulated with the Lagrangian mechanics,representing a two-degree-of-freedom nonlinear electromechanical system subject to harmonic base excitation under a 1:1 internal resonance condition.The model is normalized,and the conditions dictating monostable and bistable oscillation modes are identified.The bifurcation characteristics of the coupled system are analyzed in both oscillation modes by means of harmonic balance and continuation methods.The vibration isolation performance,with and without the coupled harvester,is evaluated in terms of displacement transmissibility to assess its dual functionalities for vibration isolation and energy harvesting.Analytical results demonstrate that integrating a piezoelectric harvester into a monostable QZS isolator under 1:1 internal resonance does not compromise its vibration isolation capability while enabling efficient energy harvesting at extremely low-frequency base excitation.Furthermore,the system's response under strong base excitation is investigated exclusively for energy harvesting in both monostable and bistable modes,leading to optimal structural parameter design.The conditions for intra-well and inter-well periodic oscillation modes,as well as chaotic responses,are analyzed analytically and validated numerically through stability charts,basins of attraction,bifurcation diagrams,time histories,and Poincarémaps.This work provides a comprehensive understanding of the oscillation dynamics of QZS isolators and offers valuable insights for optimizing their geometric parameters to function as high-performance vibration isolators and/or energy harvesters. 展开更多
关键词 bistable and monostable oscillator vibration isolator displacement transmissibility full-band vibration isolator energy harvesting intra-well and inter-well oscillation modes pitchfork(PF)bifurcation
在线阅读 下载PDF
Compact Zigzag Vibration Isolator Based on Additive Manufacturing
12
作者 JIA Meng WANG Tingwei DAI Ning 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期121-130,共10页
Devices on aircraft are subjected to complex environmental excitations that pose risks to their operational safety.Passive vibration isolation techniques are extensively employed due to their advantage of not requirin... Devices on aircraft are subjected to complex environmental excitations that pose risks to their operational safety.Passive vibration isolation techniques are extensively employed due to their advantage of not requiring additional energy sources.This paper introduces a novel metallic vibration isolator based on zigzag structures.The proposed isolator features a compact design and can be manufactured using additive manufacturing techniques,allowing for the integration of structural and functional elements.Firstly,the vibration response of the single-degree-of-freedom(SDOF)system is analyzed.To achieve effective vibration reduction,it is crucial for the isolator's stiffness to be sufficiently low.Secondly,to obtain a structure with high compliance,the traversal algorithm and the finite element method(FEM)are applied.The results confirm that the zigzag structure is a reliable high-compliance configuration.Thirdly,the parametric geometric model of the zigzag structure is developed and its stiffness is calculated.Quasi-static compression experiments validate the accuracy of the calculations.Finally,a specific engineering example is considered,where a zigzag vibration isolator is designed and fabricated.Vibration experiments demonstrate that the zigzag isolator effectively reduces both the stiffness and the fundamental frequency of the vibration system,achieving a vibration isolation efficiency exceeding 60%. 展开更多
关键词 vibration isolation passive isolators additive manufacturing zigzag structures metallic vibration isolator
在线阅读 下载PDF
Transverse vibration characteristics and influence of passenger car window glass in high-speed train passing through tunnel
13
作者 Xiaogen Liu Qi Shuang +1 位作者 Zhide Wang Detian Wan 《Railway Sciences》 2025年第4期450-463,共14页
Purpose–This paper aims to analyze the transverse vibration characteristics of the high speed train window glass when passing through tunnel.Design/methodology/approach–The lateral vibration acceleration response of... Purpose–This paper aims to analyze the transverse vibration characteristics of the high speed train window glass when passing through tunnel.Design/methodology/approach–The lateral vibration acceleration response of glass chamber of high-speed train CR400BF-A on Beijing-Chengdu high-speed railway was tested at different speeds through the tunnel entrance,exit,tunnel interior,Tunnel Group and rendezvous time in the tunnel,the lateral distribution characteristics of vibration frequency and vibration power amplification coefficient of glass of high-speed train were analyzed.Findings–The results show that:The vibration of the high-speed train glass increases significantly during the tunnel,and the amplitude of vibration acceleration in the tunnel is significantly higher than outside the tunnel as the travel speed increases;the amplitude of lateral vibration acceleration of the glass of a high-speed train does not vary with changes in tunnel length and is not affected by the aerodynamic effects of the tunnel when traveling inside the tunnel,but its vibrations create noticeable fluctuations during variations when encountering oncoming traffic;The vibration characteristics of the high-speed train glass are forced harmonic vibrations,the excitation frequency does not vary with travel speed and travel position changes inside and outside the tunnel.The lateral vibration acceleration of the glass of a high-speed train is applied vertically and uniformly to the glass surface as an“inertial force”and creates a cyclic bending vibration stress that can easily lead to fatigue damage.Originality/value–The research results provide guidance for the prevention of glass failure in high-speed trains. 展开更多
关键词 High-speed train glass Crossing tunnel vibration acceleration amplitude vibration frequency Dynamic amplification factor
在线阅读 下载PDF
High-performance milling of Ti-6Al-4V through rotary ultrasonic elliptical milling with anticlockwise elliptical vibration
14
作者 Lianxing LIU Xinggang JIANG +3 位作者 Enze YING Zhefei SUN Daxi GENG Deyuan ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第8期707-722,共16页
Ultrasonic elliptical vibration cutting(UEVC)with clockwise elliptical vibration has made notable achievements in precision machining;however,its critical cutting speed limits its application to low-speed machining ta... Ultrasonic elliptical vibration cutting(UEVC)with clockwise elliptical vibration has made notable achievements in precision machining;however,its critical cutting speed limits its application to low-speed machining tasks.Meanwhile,rotary ultrasonic elliptical machining(RUEM)with clockwise elliptical vibration has been validated as an effective high-speed cutting technology.Unfortunately,conventional RUEM leads to increased surface roughness.To address this issue and enhance machining quality,we propose a novel RUEM method employing an anticlockwise vibration direction,called anticlockwise rotary ultrasonic elliptical machining(ARUEM).The mechanisms of surface formation and subsurface strengthening for ARUEM are analyzed.Experimental validations were performed on Ti-6Al-4V alloy,revealing that ARUEM achieved substantially lower ridge heights and up to a 50%reduction in surface roughness compared to conventional RUEM.Additionally,relative to conventional milling,ARUEM resulted in up to 122.6%thicker plastic deformation layers,53.4%higher surface residual compressive stress,and 19.3%greater surface micro-hardness.This study showcases a promising method for high-performance milling of Ti-6Al-4V,offers new insights into RUEM by examining the influence of vibration direction,and enhances understanding of surface formation and subsurface strengthening in the ARUEM method. 展开更多
关键词 Ultrasonic elliptical vibration cutting(UEVC) vibration direction Rotary ultrasonic elliptical machining(RUEM) Surface formation mechanism Surface integrity High-speed milling
原文传递
Dynamic characteristics and vibration reduction performance of a novel Bi-TRMD
15
作者 SONG Yuda LI Zuohua +2 位作者 NING Jiafei SONG Tingsu TENG Jun 《Journal of Southeast University(English Edition)》 2025年第2期147-155,共9页
A novel bidirectional tuned rolling mass damper(Bi-TRMD)device is proposed,and its dynamic character-istics and vibration reduction performance are investigated.The device achieves the performance goal of bidirectiona... A novel bidirectional tuned rolling mass damper(Bi-TRMD)device is proposed,and its dynamic character-istics and vibration reduction performance are investigated.The device achieves the performance goal of bidirectional vibration reduction for a tuned rolling mass damper with a single concave structure.First,the Bi-TRMD device is introduced,and its three-dimensional(3D)mechanical model is established.The motion equations of the model are de-rived using the Gibbs-Appell equation,and a trajectory pre-diction method for the sphere and structure within the model is developed.This method demonstrates that the rolling motion of the sphere around orthogonal axes is nearly indepen-dent within a limited range,enabling the simplification of the 3D model into a two-dimensional(2D)model.The accuracy of this simplification is validated through case analysis.The vibration reduction parameters are optimized using the 2D model and Den Hartog theory,leading to the derivation of mathematical expressions for the optimal frequency ratio and damping ratio.Subsequently,the bidirectional vi-bration reduction performance of the Bi-TRMD is analyzed.The results show that under white noise excitation,the Bi-TRMD achieves a bidirectional peak acceleration reduction rate that is 9.92%and 7.79%higher than that of translational tuned mass dampers(TMD)with the same mass.These findings demonstrate that the proposed Bi-TRMD ef-fectively achieves two-directional vibration reduction with a single concave structure,offering superior vibration reduction performance. 展开更多
关键词 bidirectional tuned rolling mass damper(Bi-TRMD) tuned mass damper(TMD) dynamic charac-teristics trajectory prediction optimization of vibration reduction parameters vibration reduction performance
在线阅读 下载PDF
Integration of a hybrid vibration prediction model for railways into noise mapping software:methodology,assumptions and demonstration
16
作者 Pieter Reumers Geert Degrande +5 位作者 Geert Lombaert David JThompson Evangelos Ntotsios Pascal Bouvet Brice Nélain Andreas Nuber 《Railway Engineering Science》 2025年第1期1-26,共26页
Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping... Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium). 展开更多
关键词 Railway-induced vibration Hybrid vibration prediction model Experimental validation Low-speed approximation
在线阅读 下载PDF
An experimental study of enhancing glass machining via vibration-assisted micro-milling
17
作者 Vinod Satpute Dehong Huo +2 位作者 John Hedley Patrick Degenaar Carl Dale 《Nanotechnology and Precision Engineering》 2025年第3期74-87,共14页
Glass,with its valuable properties,finds extensive use in aerospace,optics,and biomedical fields.Owing to its low fracture toughness,glass typically fractures in a brittle manner during machining,resulting in poor sur... Glass,with its valuable properties,finds extensive use in aerospace,optics,and biomedical fields.Owing to its low fracture toughness,glass typically fractures in a brittle manner during machining,resulting in poor surface quality.This paper presents an experimental investigation of vibration-assisted machining(VAM)techniques to enhance the machining of glass materials.A novel high-frequency two-dimensional VAM system specifically designed for glass is introduced,and slot milling experiments are conducted using ultrasonic high-frequency vibrations.A low-frequency nonresonant VAM system is also employed for comparison purposes.A comprehensive examination is made of the effects of various machining parameters,such as feed rate,cutting speeds,and vibration parameters,including vibration modes and amplitudes,on the machining performance of glass.Surface roughness,edge chipping generation,and tool wear are thoroughly characterized using scanning electron microscopy.The findings demonstrate that under specific machining and vibration parameters,the proposed ultrasonic vibration-assisted micro-milling(UVAMM)system can achieve a nanometric surface roughness Ra for glass.The UVAMM system offers enhanced surface quality,improved edge quality,and reduced tool wear compared with conventional machining techniques.This study provides valuable insights and directions for the application of 2D VAM systems in achieving superior machining results for glass components at small scales with nanometric surface finishes. 展开更多
关键词 vibration-assisted machining GLASS Ultrasonic vibration MICRO-MILLING Surface roughness Edge chipping Tool wear
在线阅读 下载PDF
An optimal control method of internal resonances for vibration isolation system using an aperiodic isolator
18
作者 Yujun Liu Jing Liu +2 位作者 Guang Pan Qiaogao Huang Baowei Song 《Acta Mechanica Sinica》 2025年第1期175-191,共17页
Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study propo... Periodic isolator is well known for its wave filtering characteristic.While in middle and high frequencies,the internal resonances of the periodic isolator are evident especially when damping is small.This study proposes a novel aperiodic vibration isolation for improving the internal resonances control of the periodic isolator.The mechanism of the internal resonances control by the aperiodic isolator is firstly explained.For comparing the internal resonances suppression effect of the aperiodic isolator with the periodic isolator,a dynamic model combing the rigid machine,the isolator,and the flexible plate is derived through multi subsystem modeling method and transfer matrix method,whose accuracy is verified through the finite element method.The influences of the aperiodicity and damping of the isolator on the vibration isolation performance and internal resonances suppression effect are investigated by numerical analysis.The numerical results demonstrate that vibration attenuation performances of the periodic isolator and aperiodic isolator are greatly over than that of the continuous isolator in middle and high frequencies.The aperiodic isolator opens the stop bandgaps comparing with the periodic isolator where the pass bandgaps are periodically existed.The damping of the isolator has the stop bandgap widening effect on both the periodic isolator and the aperiodic isolator.In addition,a parameter optimization algorithm of the aperiodic isolator is presented for improving the internal resonances control effect.It is shown that the vibration peaks within the target frequency band of the aperiodic isolator are effectively reduced after the optimization.Finally,the experiments of the three different vibration isolation systems are conducted for verifying the analysis work. 展开更多
关键词 Internal resonances vibration isolation Periodic structure vibration wave propagation
原文传递
3D dynamic numerical modeling on vibration mitigation efficiency of open trench with horizontal hollow pipes
19
作者 Hu Zhonghua Chen Qingsheng +2 位作者 Xu Changjie Sudip Basack Luo Wenjun 《Earthquake Engineering and Engineering Vibration》 2025年第3期795-809,共15页
Among different existing vibration isolation methods,open trenches is a technique that is commonly used for reducing the transfer of ground vibrations.Despite many benefits of such a technique for isolating ground vib... Among different existing vibration isolation methods,open trenches is a technique that is commonly used for reducing the transfer of ground vibrations.Despite many benefits of such a technique for isolating ground vibrations,its primary disadvantage is its instability and lack of vibration isolation effectiveness apart from the stability of the trenches.To address these concerns,a new technique has been developed by the authors,which includes filling up these trenches with a group of hollow pipes in a specific pattern.This is a novel method for reducing ground vibrations by burying hollow pipes horizontally.Through the use of three-dimensional(3D)finite-element modeling,the effectiveness of such hollow pipes in decreasing ground vibrations generated by harmonic stress excitation on the ground surface was investigated.Compared to open trench and rows of piles,these pipe assemblages have been shown to be very successful in reducing ground vibration transmission while also addressing issues of instability and enhancing vibration isolation efficiency.A 3D dynamic numerical model is constructed in PLAXIS3D,and the findings are validated against earlier publications.Next,a comparison research study is conducted,with its focus between horizontal hollow and vertical pipe piles.Finally,a detailed parametric study is carried out to establish the effect of each of the wave barrier’s architectural,material,and loading elements on its vibration isolation effectiveness.Critical parameters are discovered and tuned to maximize the efficiency of this new technique. 展开更多
关键词 ground vibrations hollow pipe vertical pipe pile vibration isolation
在线阅读 下载PDF
Wind Turbine Composite Blades:A Critical Review of Aeroelastic Modeling and Vibration Control
20
作者 Tingrui Liu Qinghu Cui Dan Xu 《Fluid Dynamics & Materials Processing》 2025年第1期1-36,共36页
With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impa... With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch. 展开更多
关键词 Aeroelastic instability vibration control composite blade stall-induced nonlinear flutter high-frequency microvibration
在线阅读 下载PDF
上一页 1 2 216 下一页 到第
使用帮助 返回顶部