期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Microstructure features induced by fatigue crack initiation up to very-high-cycle regime for an additively manufactured aluminium alloy
1
作者 Xiangnan Pan Leiming Du +1 位作者 Guian Qian Youshi Hong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第6期247-260,共14页
Fatigue failure can still occur beyond 107 cycles,i.e.very-high-cycle fatigue(VHCF),in many metallic materials,such as aluminium alloys and high-strength steels.For VHCF of high-strength steels,a fine granular area(FG... Fatigue failure can still occur beyond 107 cycles,i.e.very-high-cycle fatigue(VHCF),in many metallic materials,such as aluminium alloys and high-strength steels.For VHCF of high-strength steels,a fine granular area(FGA)surrounding an inclusion is commonly identified as the characteristic region of crack initiation on the fracture surface.However,no such FGA feature and related crack initiation behaviour were observed in VHCF of conventionally cast or wrought aluminium alloys.Here,we first reported the distinct mechanisms of crack initiation and early growth,namely the microstructure feature and the role of FGA in VHCF performance for an additively manufactured(AM)AlSi10Mg alloy.The AM pores play a key role in fatigue crack initiation similar to that of the inclusions in high-strength steels,resulting in almost identical FGA behaviour for different materials under a range of mean stress with a stress ratio at R<0 or R>0.The profile microstructure of FGA is identified as a nanograin layer with Si rearrangement and grain boundary transition.This process consumes a large amount of cyclic plastic energy making FGA undertake a vast majority of VHCF life.These results will deepen the understanding of VHCF nature and shed light on crack initiation mechanism of other aluminium and AM alloys. 展开更多
关键词 Aluminium alloy Additive manufacturing NANOGRAINS very-high-cycle fatigue(VHCF) Crack initiation Mean stress
原文传递
Effects of loading condition on very-high-cycle fatigue behaviour and dominant variable analysis 被引量:5
2
作者 LEI ZhengQiang XIE JiJia +1 位作者 SUN ChengQi HONG YouShi 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第1期74-82,共9页
The specimens of a high carbon chromium steel were quenched and tempered at 150℃, 180℃ and 300℃. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences o... The specimens of a high carbon chromium steel were quenched and tempered at 150℃, 180℃ and 300℃. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences of loading condition on the behaviour of very-high-cycle fatigue (VHCF). Experimental results show the different influences of inclusion size on the fa- tigue life for the two loading conditions. Predominant factors and mechanism for the fine-granular-area (FGA) of crack origin were discussed. In addition, a reliability analysis based on a modified Tanaka-Mura model was carried out to evaluate the sen- sitivity of inclusion size, stress, and AKFGA to the life of VHCF crack initiation. 展开更多
关键词 very-high-cycle fatigue FGA loading condition life scatter INCLUSION
原文传递
Application of ultrasonic fatigue technology in very-high-cycle fatigue testing of aviation gas turbine engine blade materials:A review
3
作者 ZHAO JiuCheng WAN Jie +2 位作者 ZHANG ShiZhong YAN ChuLiang ZHAO HongWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第5期1317-1363,共47页
The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing... The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing instrumentation and technology.This article begins with a comprehensive review of the existing available techniques that enable VHCF testing.Recent advances in ultrasonic fatigue testing(UFT)techniques are highlighted,containing their new capabilities and methods for single load,multiaxial load,variable amplitude fatigue,and combined cycle fatigue.New techniques for conducting UFT in high-temperature,humid environments,and corrosive environments are summarized.These developments in mechanical loading and environmental building techniques provide the possibility of laboratory construction for real service conditions of blade materials.New techniques that can be used for in situ monitoring of VHCF damage are summarized.Key issues in the UFT field are presented,and countermeasures are collated.Finally,the existing problems and future trends in the field are briefly described. 展开更多
关键词 aviation gas turbine engine blade materials ultrasonic fatigue very-high-cycle fatigue high-temperature complex stress in situ testing
原文传递
Effect of ultrasonic peening treatment on the fatigue behaviors of a magnesium alloy up to very high cycle regime 被引量:2
4
作者 Yao Chen Fulin Liu +4 位作者 Chao He Lang Li Chong Wang Yongjie Liu Qingyuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第3期659-673,共15页
Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation ... Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation mechanism keeps the same and results in a single-faceted morphology at crack initiation site.Microcracks initiate as Mode Ⅱ crack within the original grain,but deflect to Mode I crack outside of the original cracked grain.A threshold SIF value is proposed to evaluate the retarding effect of grain boundary on microcrack propagation.Outside of the original cracked grain,Mode I crack propagation below the threshold ΔK_(σ-th) is responsible for the formation of fine granular area(FGA,a nano-grain layer).Based on the Numerous Cyclic Pressing(NCP) model,it is proposed that crack type should be another necessary condition for the formation of FGA. 展开更多
关键词 Ultrasonic peening treatment very-high-cycle fatigue Crack initiation mechanism Fine granular area Nanograins.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部