期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
High-quality SiO_2 Colloidal Crystal Fabricated by Controllable Vertical Deposition Method
1
作者 CAI Xiao-mei CHEN Fu-yi JIE Wan-qi 《Semiconductor Photonics and Technology》 CAS 2006年第2期95-99,共5页
Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of control... Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of controllable vertical deposition method. The surface morphology and optical properties were studied by SEM and UV-Vis-NIR. It was found that the high-quality silica colloidal photonic crystals were obtained from ethanol solutions with environment temperature between 45℃ and 55℃, humidity between 66% and 76%, the volume fraction of microspheres is between 0.8% and 1.5%. The ordered close-packed photonic crystal fabricated by controllable vertical deposition method had the two photonic bandgaps in the visible light band and near infrared band. 展开更多
关键词 Photonic crystals Silica colloidal crystals controllable vertical deposition Photonic bandgap
在线阅读 下载PDF
PRECISE LEVELING OF THE VERY LONG QINLING MOUNTAIN TUNNEL 被引量:1
2
作者 ZHANG Zhenglu YANG Zhentao XU Shaoquan ZHANG Xiangduo 《Geo-Spatial Information Science》 2000年第1期57-61,共5页
The Qinling tunnel with length of 18. 488km is located on the railway line from Xi’ an (Shanxi Province) to Ankan (Sichuan Province) in the middle of Qinling moun- tain. It is the longest double track railway tunnel ... The Qinling tunnel with length of 18. 488km is located on the railway line from Xi’ an (Shanxi Province) to Ankan (Sichuan Province) in the middle of Qinling moun- tain. It is the longest double track railway tunnel in China and takes the third place in the world. According to the design, the break-through error in vertical direction caused by the al- timetric control surveying is limited to 18mm for the case of one piercing face. Because the leveling route reaches over 120km in length and must go over two mountains in 2 800m height, the first-order precise leveling and precise gravity measurement should be carried out in the construction stage. In this paper the field leveling approach, the application of new technology,some experience as well as the office calculation with final results analysis are in- troduced. By meticulous planning, organization and observation, the final accuracy of vertical difference between two tunnel end points is only 8mm, and it provides reliable surveying guarantee for this great tunnel engineering. Finally it is pointed out that this vertical differ- ence distinguishes obviously from the primary measurement result as high as 114mm. It means that the primary result is not accurate enough. 展开更多
关键词 TUNNEL break-through error vertical control surveying gravity measurement
在线阅读 下载PDF
ETH-GQS: An estimation of geoid-to-quasigeoid separation over Ethiopia
3
作者 Ephrem Y.Belay Walyeldeen Godah +1 位作者 Malgorzata Szelachowska Robert Tenzer 《Geodesy and Geodynamics》 CSCD 2022年第1期31-37,共7页
The determination of accurate orthometric or normal heights remains one of the main challenges for the geodetic community in Ethiopia.These heights are required for geodetic and geodynamic scientific research as well ... The determination of accurate orthometric or normal heights remains one of the main challenges for the geodetic community in Ethiopia.These heights are required for geodetic and geodynamic scientific research as well as for extensive engineering applications.The main objective of this study is to estimate the geoid-to-quasi geoid separation(GQS)in Ethiopia(ETH-GQS).Such separation would be required for the conversion between geoid and quasigeoid models,which is mandatory for the determination of accurate geodetic heights in mountain regions.The airborne free-air gravity anomalies and the topo-graphic information retrieved from the SRTM3(Shuttle Radar Topography Mission of a spatial resolution 3 arc-second)digital elevation model were used to compute the ETH-GQS model according to the Sjoberg's strict formula for the geoid-to-quasigeoid separation.The ETH-GQS was then validated using GNSS-levelling data as well as geoid heights determined from different Global Geopotential Models(GGMs),namely the EGM2008,EIGEN-6C4 and GECO.The results reveal that the standard deviation of differences between the geoid heights obtained from the EIGEN-6C4 model and the geometric geoid heights obtained from GNSS-levelling data were improved by~75%(i.e.from~24 to~6 cm)when considering GQS values obtained from the ETH-GQS. 展开更多
关键词 Geoid-to-quasigeoid separation GNSS-Levelling Ethiopian vertical control network Orthometric and normal heights Airborne gravity data
原文传递
Fabrication of high-quality three-dimensional photonic crystal heterostructures 被引量:3
4
作者 刘正奇 冯天华 +2 位作者 戴峭峰 吴立军 兰胜 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2383-2388,共6页
Three-dimensional photonic crystal (PC) heterostructures with high quality are fabricated by using a pressure controlled isothermal heating vertical deposition technique. The formed heterostructures have higher qual... Three-dimensional photonic crystal (PC) heterostructures with high quality are fabricated by using a pressure controlled isothermal heating vertical deposition technique. The formed heterostructures have higher quality, such as deeper band gaps and sharper band edges, than the heterostructures reported so far. Such a significant improvement in quality is due to the introduction of a thin TiO2 buffer layer between the two constitutional PCs. It is revealed that the disorder caused by lattice mismatch is successfully removed if the buffer layer is used once. As a result, the formed heterostructures possess the main features in the band gap of constitutional PCs. The crucial role of the thin buffer layer is also verified by numerical simulations based on the finite-difference time-domain technique. 展开更多
关键词 photonic crystal heterostructure pressure controlled isothermal heating vertical deposition finite-difference time-domain technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部