期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
Crustal velocity structures beneath North China revealed by ambient noise tomography 被引量:8
1
作者 Lihua Fang Jianping Wu +2 位作者 Zhifeng Ding Weilai Wang Giuliano Francesco Panza 《Earthquake Science》 CSCD 2010年第5期477-486,共10页
We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array. The study region is divided into grid with inte... We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array. The study region is divided into grid with interval 0.25°×0.25°, and group velocity distribution maps between 4 s and 30 s are obtained using ambient noise tomography method. The lateral resolution is estimated to be 20-50 km for most of the study area. We construct a 3-D S wave velocity model by inverting the pure path dispersion curve at each grid using a genetic algorithm with smoothing constraint. The crustal structure observed in the model includes sedimentary basins such as North China basin, Yanqing-Huailai basin and Datong basin. A well-defined low velocity zone is observed in the Beijing-Tianjin-Tangshan region in 22-30 km depth range, which may be related to the upwelling of hot mantle material. The high velocity zone near Datong, Shuozhou and Qingshuihe within the depth range of 1-23 km reveals stable characteristics of Ordos block. The Taihangshan front fault extends to 12 km depth at least. 展开更多
关键词 seismic noise surface wave tomography velocity structure genetic algorithm North China
在线阅读 下载PDF
Crustal velocity structures and their tectonic implications in different tectonic block regions of the Chinese mainland
2
作者 Xiankang Zhang Yonghong Duan Jinren Zhao Chengke Zhang Shixu Jia Jianshi Zhang Fuyun Wang Zhuoxin Yang Suzhen Pan 《Earthquake Science》 CSCD 2009年第4期337-346,共10页
In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are disc... In this paper, the typical velocity structures and average velocities of the crust in six different active tectonic block regions are presented on the basis of previous studies and their tectonic implications are discussed. The results show that different tectonic units have different features of crustal velocity structures. In general, there are low velocity distributions in the crust in regions with strong tectonic activities, and the scales of low velocity distributions are related to the tectonic activities. The average velocities are relatively low in such regions. This reflects strong crustal deformation and the variations of states of matter in the crust resulting from strong tectonic movements. These regions are also seismically active zones frequented by strong earthquakes. Therefore, studying crustal velocity structures of these regions is of great importance to understanding crustal geodynamic process and seismogenic tectonic background. 展开更多
关键词 tectonic block wide angle reflection and refraction experiments velocity structure crust model
在线阅读 下载PDF
Identifying potential hazards of opencast mining area using acoustic velocity structure imaging method
3
作者 DONG Long-jun YAN Ming-chun +2 位作者 PEI Zhong-wei ZHANG Yi-han YANG Long-bin 《Journal of Central South University》 2025年第2期405-419,共15页
Identifying potential hazards is crucial for maintaining the structural stability of opencast mining area.To address the limitations of irregular structure and sparse microseismic events in opencast mining monitoring,... Identifying potential hazards is crucial for maintaining the structural stability of opencast mining area.To address the limitations of irregular structure and sparse microseismic events in opencast mining monitoring,this paper proposes an active-source imaging method for identifying potential hazards precisely based on velocity structure.This method innovatively divides the irregular structure into unstructured grids and introduces a damping and smoothing regularization operator into the inversion process,mitigating the ill-posedness caused by the sparse distribution of events and rays.Numerical and laboratory experiments were conducted to verify the reliability and effectiveness of the proposed method.The results demonstrate the competitive performance of the method in identifying hazard areas of varying sizes and numbers.The proposed method shows potential for meeting hazard identification requirements in the complex opencast mining structure.Furthermore,field experiments were conducted on an rare earth mine slope.It confirms that the proposed method provides a more concrete and intuitive scheme for stability monitoring for the microseismic monitoring system.This paper not only demonstrates the application of acoustic structure velocity imaging technology in detecting unstructured potential hazard regions but also provides valuable insights into the construction and maintenance of stable opencast mining area. 展开更多
关键词 opencast mining traveltime tomography ray tracing velocity structure
在线阅读 下载PDF
Crustal velocity structure and composition of Bayan Har block and surrounding areas
4
作者 Jiyan Lin Tao Xu +3 位作者 Zhenyu Fan Yong Qiu Minjie Chen Yonghong Duan 《Earthquake Research Advances》 2025年第3期47-55,共9页
The Bayan Har block,one of China's most seismically active regions,has experienced multiple major earthquakes(≥M 7.0)in recent years.It is a key area for investigating the interactions between the Qinghai-Xizang(... The Bayan Har block,one of China's most seismically active regions,has experienced multiple major earthquakes(≥M 7.0)in recent years.It is a key area for investigating the interactions between the Qinghai-Xizang(Qingzang)Plateau and adjacent blocks,plateau uplift,and strong earthquake mechanisms.P-wave velocity and crustal composition provide key constraints on the properties of distinct tectonic units and their evolutionary modification processes.Based on the results of 8 Deep Seismic Sounding(DSS)profiles completed in the Bayan Har block and surrounding areas over the past 20 years,We constructed one-dimensional P-wave velocity models for the crust of Bayan Har block,Qilian fold belt,Qinling fold belt,Alxa block,Ordos block and Sichuan basin.Furthermore,crustal composition models for different tectonic units were established based on these results.The results reveal that the crustal thickness of the Bayan Har block gradually decreases towards the NNE,NE,and SE directions,while the average crustal velocity increases correspondingly.The felsic layer in the crust accounts for more than half of the total crustal thickness.The mafic content within the crust of different tectonic units exhibits notable variations,which may reflect that the Bayan Har block,Qilian fold belt,and Qinling fold belt have experienced more intensive lithospheric evolution processes compared to Ordos basin and Sichuan basin.The seismicity distribution in this region is significantly controlled by crustal velocity and composition heterogeneity across the Bayan Har block and adjacent areas,which demonstrates that earthquakes within and around the Bayan Har block exhibit both high frequency and larger magnitudes.These seismic characteristics primarily result from intense crustal stress accumulation and release during the outward expansion of the Qingzang Plateau. 展开更多
关键词 NE Qingzang plateau Bayan Har Crustal velocity structure Crustal composition
在线阅读 下载PDF
Investigation of Near-Surface S-Wave Velocity Structure beneath the Epicenter and adjacent Area of the Jishishan Earthquake by using the Receiver Function
5
作者 Fan-chang Meng Ruo-ge Xu +2 位作者 Hui Sun Bo Li Yun Long 《Applied Geophysics》 2025年第3期647-659,893,共14页
Based on the observational data from 60 short-period stations deployed in the Jishishan M6.2 earthquake epicenter and adjacent regions(Gansu Province,2023),this study inverted the near-surface S-wave velocity structur... Based on the observational data from 60 short-period stations deployed in the Jishishan M6.2 earthquake epicenter and adjacent regions(Gansu Province,2023),this study inverted the near-surface S-wave velocity structure through teleseismic receiver function analysis by using the amplitude of direct P-wave.The results reveal that the epicentral area(Liugou Township and surroundings)exhibits markedly low S-wave velocities of 400-600 m/s,with a mean value of(500±50)m/s.In contrast,intermountain basins-Guanting Basin and Dahejia Basin-demonstrate significantly elevated velocities,exceeding the epicentral zone by 100-300 m/s,with values concentrated at 600-900 m/s.Notably,localized areas such as Jintian Village and Caotan Village maintain stable S-wave velocities of(700±30)m/s.The western margin tectonic belt of Jishishan displays distinctive velocity differentiation:A pronounced velocity gradient zone along the 35.8°N latitude boundary separates northern areas(<550 m/s)from southern regions(>750 m/s).These findings demonstrate significant spatial heterogeneity in shallow S-wave velocity structures,primarily controlled by three factors:(1)topographic-geomorphic units,(2)stratigraphic lithological contrasts,and(3)anthropogenic modifications.The persistent low-velocity anomalies(<600 m/s)in the epicentral zone and northern Yellow River T2 terrace likely correlate with Quaternary unconsolidated sediments,enhanced groundwater circulation,and bedrock weathering.These results provide critical geophysical constraints for understanding both the seismogenic environment of the Jishishan earthquake and its damage distribution patterns.Furthermore,they establish a foundational framework for regional seismic intensity evaluation,site amplification analysis,and secondary hazard risk assessment. 展开更多
关键词 Jishishan Earthquake Dense Seismic Array Receiver Function S-Wave velocity Structure
在线阅读 下载PDF
Shear-wave velocity structures of the shallow crust beneath the Ordos and Sichuan Basins from multi-frequency direct P-wave amplitudes in receiver functions 被引量:3
6
作者 Chenxiao TANG Ling CHEN Xu WANG 《Science China Earth Sciences》 SCIE EI CSCD 2022年第5期810-823,共14页
As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))s... As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))structures of the shallow crust(depth up to 10 km)beneath the two basins are imaged based on the frequency-dependence of direct P-wave amplitudes in receiver functions.The teleseismic data used in the study came from 160 broadband seismic stations,including permanent and temporary stations.The results show that the V_(S) and the thickness of the sediments in the Ordos Basin and the Sichuan Basin are respectively lower and thicker in the west than in the east.In the Ordos Basin,the shallow crustal V_(S) increases gradually from 2.10 km s^(−1)in the northwest to 2.65 km s^(−1)in the southeast and the thickest sediments are 7–8 km in the northwest and 5 km in the east.In the Sichuan Basin,the shallow crustal V_(S) increases from 2.4 km s^(−1) in the west to 2.7 km s^(−1)in the east and the thickness of the sediments decreases from>7 km in the west to 6 km in the east.The east-west difference of the shallow crustal structures of the two basins may have been controlled by the Cenozoic India-Eurasia collision.The western parts of the basins near the collision have a higher deposition rate,while in the parts inside the basins far from the collision,the V_(S) slowly increases with depth,indicating that these areas have experienced a more uniform deposition process.In addition,both basins are characterized by velocity structures that are higher along the edges and lower inside of the basins.The edges of the basins suffered strong denudation due to the uplifting and deformation influenced by tectonic evolution.The downward gradient of the shear-wave velocity beneath the Ordos Basin is twice that of the Sichuan Basin,which may be caused by the different deposition and denudation rates of the two basins resulting from differences in structural evolution and thermal events.In addition,the northern Ordos Basin exhibits a strong structural horizontal stratification,while the southern part shows obvious lateral variations in the V_(S) structure,both of which may have been affected by the Qilian orogenic event,the collision and assembly of the South China and the North China block,and the lateral extrusion of the Tibetan Plateau. 展开更多
关键词 Shallow crustal velocity structures Receiver function Frequency dependence Ordos Basin Sichuan Basin Tectonic evolution
原文传递
MULTI-SCALE COHERENT STRUCTURES IN TURBULENT BOUNDARY LAYER DETECTED BY LOCALLY AVERAGED VELOCITY STRUCTURE FUNCTIONS 被引量:1
7
作者 刘建华 姜楠 +1 位作者 王振东 舒玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第4期495-504,共10页
The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which ... The time sequence of longitudinal velocity component at different vertical locations in turbulent boundary layer was finely measured in a wind tunnel. The concept of coarse_grained velocity structure functions, which describes the relative motions of straining and compressing for multi_scale eddy structures in turbulent flows, was put forward based on the theory of locally multi_scale average. Based on the consistency between coarse_grained velocity structure function and Harr wavelet transformation,detecting method was presented, by which the coherent structures and their intermittency was identified by multi_scale flatness factor calculated by locally average structure function. Phase_averaged evolution course for multi_scale coherent eddy structures in wall turbulence were extracted by this conditional sampling to educe scheme. The dynamics course of multi_scale coherent eddy structures and their effects on statistics of turbulent flows were studied. 展开更多
关键词 turbulent boundary layer coherent structure flatness factor intermittency locally averaged velocity structure function
在线阅读 下载PDF
ROLE OF UNDERGROUND STRUCTURE DEFORMATION VELOCITY IN THE ANALYSIS OF BLAST-RESISTANT STRUCTURES
8
作者 ZHAO Xiao-bing(赵晓兵) +1 位作者 FANG Qin(方秦) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第4期487-492,共6页
The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role... The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role of deformation velocity of the structure will truthfully describe the actual situation of structural vibration. With the one-dimensional plane wave theory, the expression of load on the structural periphery is developed, and the generalized variation principle for the dynamic analysis of underground arched-bar structures is given. At the same time, the results of the numerical calculation are compared. 展开更多
关键词 blast-resistant structure dynamic analysis structural deformation velocity generalized variation principle
在线阅读 下载PDF
THE EFFECTS OF VELOCITY RATIO ON THE LARGE SCALE COHERENT STRUCTURES IN FREE SHEAR LAYERS
9
作者 Zhang Hongquan and Shu Wei Tianjin University 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第3期257-263,共7页
The velocity ratio of a free shear layer has an important influence on the spatial development of the large scale coherent structures in the layer. In this study, numerical simulations are performed to get an insight ... The velocity ratio of a free shear layer has an important influence on the spatial development of the large scale coherent structures in the layer. In this study, numerical simulations are performed to get an insight into this problem. The obtained numerical results agree quite well with those of a linear inviscid stability theory and the available experimental data. 展开更多
关键词 In THE EFFECTS OF velocity RATIO ON THE LARGE SCALE COHERENT structures IN FREE SHEAR LAYERS
在线阅读 下载PDF
Sedimentary Structure Characteristics and Spatial Distribution Pattern of the Zhaoji Salt Mine Derived from Dense Array Ambient Noise Tomography
10
作者 Hongwei Wang Xiaofeng Tian +5 位作者 Qiaoxia Liu Jia Cheng Ming Zhou Zhiping Xu Jiyan Lin Shuaipeng Zhu 《Journal of Earth Science》 2025年第5期2094-2108,共15页
Due to the lack of the three-dimensional structure of the Zhaoji Salt Basin,the salt mining enterprises have obvious clustering when choosing sites.Production capacity declines rapidly as mining deepens,and the enterp... Due to the lack of the three-dimensional structure of the Zhaoji Salt Basin,the salt mining enterprises have obvious clustering when choosing sites.Production capacity declines rapidly as mining deepens,and the enterprises are entering a stage of stagnation in production.In this study,a dense seismic array of 125 short-period stations was deployed around the core mining area and its vicinity of the salt mine industry,we used the ambient noise tomography(ANT)method to image the three-dimensional shear wave velocity structure at the depth shallower than 3 km.The results indicate:(1)The overall shear wave velocity in the study area is relatively lower,ranging from 0.8 to 1.8 km/s,which could be related to the loose and thick deposition of the Zhaoji sub-depression.(2)The three-dimensional shear wave velocity structure reveals that the sedimentary thickness of the Zhaoji sub-depression is deeper in the southeast and shallower in the northwest,with the sedimentary center located around Heping Town and Dahuangzhuang Town.(3)The Zhaoji salt mine is a low-velocity anomalous zone in the shear wave velocity structure with an inverse‘C'character spreading along Nanchenji Town and Zhaoji Town,with a depth ranging from approximately 1.2 to 2.8 km,it may be caused by the development of rock fissures due to water extraction and injection.The surrounding rock exhibits relatively high velocity,which reflects the morphological characteristics of the Zhaoji Salt Basin.The three-dimensional shear wave velocity model obtained in this study provides scientific guidance for the industrial exploitation of the Zhaoji salt mine and reference for salt exploration of the Hongze Salt Basin.It also provides an important basis for the seismic risk assessment of the salt basins.Simultaneously,it holds significant implications for exploring the application of ambient noise tomography method in spatial detection of salt mine belt. 展开更多
关键词 ambient noise tomography Zhaoji salt mine group velocity velocity structure sedimentary structure distribution pattern SEDIMENTOLOGY mineral deposits
原文传递
Double-difference tomography of P- and S-wave velocity structure beneath the western part of Java, Indonesia
11
作者 Shindy Rosalia Sri Widiyantoro +1 位作者 Andri Dian Nugraha Pepen Supendi 《Earthquake Science》 2019年第1期12-25,共14页
West Java in the western part of the Sunda Arc has a relatively high seismicity due to subduction activity and faults.In this study,double-difference tomography was used to obtain the 3D velocity tomograms of P and S ... West Java in the western part of the Sunda Arc has a relatively high seismicity due to subduction activity and faults.In this study,double-difference tomography was used to obtain the 3D velocity tomograms of P and S waves beneath the western part of Java.To infer the geometry of the structure beneath the study area,precise earthquake hypo・center determination was first performed before tomographic imaging.For this,earthquake waveform data were extracted from the regional Meteorological,Climatological,Geophysical Agency(BMKG)network of Indonesia from South Sumatra to Central Java.The P and S arrival times for about 1,000 events in the period April 2009 to July 2016 were selected,the key features being events of magnitude>3,azimuthal gap<210°and number of phases>8.A nonlinear method using the oct-tree sampling algorithm from the NonLinLoc program was employed to determine the earthquake hypocenters.The hypocenter locations were then relocated using double-difference tomography(tomoDD).A significant reduction of travel-time(root mean square basis)and a better clustering of earthquakes were achieved which correlated well with the geological structure in West Java.Double-difference tomography was found to give a clear velocity structure,especially beneath the volcanic arc area,i.e.,under Mt Anak Krakatau,Mt Salak and the mountains complex in the southern part of West Java.Low velocity anomalies for the P and S waves as well as the vp/vs ratio below the volcanoes indicated possible partial melting of the upper mantle which ascended from the subducted slab beneath the volcanic arc. 展开更多
关键词 West Java P-and S-wave velocity structures double-difference tomography
在线阅读 下载PDF
Analysis of factors infl uencing microseismic detection and location in shale gas extraction areas of western Hubei
12
作者 Hao Wan-peng Zhang Li-fen +3 位作者 Zhao Yan-nan Zheng Rong-ying Qin Wei-bing and Li Jing-gang 《Applied Geophysics》 2025年第2期523-534,561,共13页
The study area is rich in shale gas resources and has reached the stage of comprehensive development. Shale gas extraction poses risks such as induced seismicity and well closure, compounded by the limited availabilit... The study area is rich in shale gas resources and has reached the stage of comprehensive development. Shale gas extraction poses risks such as induced seismicity and well closure, compounded by the limited availability of fi xed seismic monitoring stations nearby. To address these challenges, a dense observation array was developed within the study area to monitor and analyze microseismic activity during hydraulic fracturing. Microseismic events generated by hydraulic fracturing typically exhibit low amplitude and signal-to-noise ratio, rendering traditional manual analysis methods impractical. To overcome these limitations, an innovative artifi cial intelligence method combining picking-association-location (PAL) and match-expand- shift-stack (MESS) techniques (PALM) has been utilized for automated seismic detection. Numerous factors influence the accuracy of microseismic detection and localization. To evaluate these factors, the effects of various velocity structure models, instrument types, and station distributions on seismic location were analyzed and compared. The results indicate that the PALM method significantly mitigates the influence of velocity structure models on seismic location accuracy. Additionally, the use of broadband seismic instruments and a uniform station distribution enhances the precision of seismic location results. Furthermore, by integrating data from diff erent types of observation instruments, a comprehensive seismic catalog for the study area was established. These fi ndings not only enhance seismic location accuracy but also provide valuable guidance for optimizing regional seismic monitoring network design and improving seismic risk assessment. 展开更多
关键词 earthquake location velocity structure model station distribution PALM shale gas
在线阅读 下载PDF
Joint Inversion of the 3D P Wave Velocity Structure of the Crust and Upper Mantle under the Southeastern Margin of the Tibetan Plateau Using Regional Earthquake and Teleseismic Data 被引量:12
13
作者 LI Dahu LIAO Hua +4 位作者 DING Zhifeng ZHAN Yan WU Pingping XU Xiaoming ZHENG Chen 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第1期16-33,共18页
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background o... The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity. 展开更多
关键词 3D P-wave velocity structure China seismic array detection Panxi region Chuan-DianBlock Daliangshan Block southeastern margin of Qinghai-Tibet Plateau
在线阅读 下载PDF
Imaging 3-D crustal P-wave velocity structure of western Yunnan with bulletin data 被引量:17
14
作者 Jing Huang Xuejun Liu +1 位作者 Youjin Su Baoshan Wang 《Earthquake Science》 CSCD 2012年第2期151-160,共10页
Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting a... Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas. 展开更多
关键词 regional earthquake 3-D velocity structure later phase Yunnan region
在线阅读 下载PDF
3-D velocity structure in the central-eastern part of Qilianshan 被引量:8
15
作者 ZHANG Yuan-sheng(张元生) +7 位作者 ZHOU Min-du(周民都) RONG Dai-lu(荣代潞) ZHANG Li-guang(张立光) XU Zhong-qiu(许中秋) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第3期272-281,共10页
The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the ... The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters. 展开更多
关键词 central-eastern Qilianshan micro-earthquake observation 3-D velocity structure focal pa-rameters joint inversion
在线阅读 下载PDF
Seismic tomography of Yunnan region using short-period surface wave phase velocity 被引量:8
16
作者 HE Zhengqin(何正勤) +3 位作者 SU Wei(苏伟) YE Tai-lan(叶太兰) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第6期642-650,共9页
The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velo... The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method. Adopting tomography method, the distribution maps of phase velocities at various peri-ods in Yunnan region are inverted. The maps of phase velocities on profiles along 24N, 25N, 26N, 27N and 100.5E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities. 展开更多
关键词 Yunnan region phase velocity of Rayleigh waves TOMOGRAPHY middle and upper crust velocity structure
在线阅读 下载PDF
A study on 3-D velocity structure of crust and upper mantle in Sichuan -Yunnan region, China 被引量:7
17
作者 王椿镛 Mooney W.D +3 位作者 王溪莉 吴建平 楼海 王飞 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第1期1-17,共17页
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter... Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below. 展开更多
关键词 regional earthquake Moho discontinuity 3-D velocity structure network method plate collision SEISMICITY
在线阅读 下载PDF
Seismic Velocity Structure and Composition of the Continental Crust of Eastern China 被引量:5
18
作者 WANGYang CAOJiamin ZHUJieshou 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期291-297,共7页
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geother... On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China indicate that extension has played an important role in the continental crust evolution of eastern China. 展开更多
关键词 crustal composition seismic velocity structure GEOTHERM DENSITY eastern China
在线阅读 下载PDF
S-wave velocity structure beneath Changbaishan volcano inferred from receiver function 被引量:6
19
作者 Jianping Wu Yuehong Ming Lihua Fang Weilai Wang 《Earthquake Science》 CSCD 2009年第4期409-416,共8页
The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath ... The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic region, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldera. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con- sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust. 展开更多
关键词 CHANGBAISHAN VOLCANO seismic velocity structure receiver function
在线阅读 下载PDF
Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China 被引量:9
20
作者 DaHu Li ZhiFeng Ding +3 位作者 Yan Zhan PingPing Wu LiJun Chang XiangYu Sun 《Earth and Planetary Physics》 CSCD 2021年第4期348-361,共14页
On August 8,2017,a magnitude 7.0 earthquake occurred in Jiuzhaigou County,Sichuan Province,China.The deep seismogenic environment and potential seismic risk in the eastern margin of Tibetan Plateau have once again att... On August 8,2017,a magnitude 7.0 earthquake occurred in Jiuzhaigou County,Sichuan Province,China.The deep seismogenic environment and potential seismic risk in the eastern margin of Tibetan Plateau have once again attracted the close attention of seismologists and scholars at home and abroad.The post-earthquake scientific investigation could not identify noticeable surface rupture zones in the affected area;the complex tectonic background and the reason(s)for the frequent seismicity in the Jiuzhaigou earthquake region are unclear.In order to reveal the characteristics of the deep medium and the seismogenic environment of the M7.0 Jiuzhaigou earthquake region,and to interpret the tectonic background and genesis of the seismicity comprehensively,in this paper,we have reviewed all available observation data recorded by the regional digital seismic networks and large-scale,dense mobile seismic array(China Array)for the northern section of the North-South Seismic Belt around Jiuzhaigou earthquake region.Using double-difference seismic tomography method to invert the three-dimensional P-wave velocity structure characteristics of the upper crust around the Jiuzhaigou earthquake region,we have analyzed and discussed such scientific questions as the relationship between the velocity structure characteristics and seismicity in the Jiuzhaigou earthquake region,its deep tectonic environment,and the ongoing seismic risk in this region.We report that:the P-wave velocity structure of the upper crust around the Jiuzhaigoug earthquake region exhibits obvious lateral inhomogeneity;the distribution characteristics of the shallow P-wave velocity structure are closely related to surface geological structure and formation lithology;the M7.0 Jiuzhaigou earthquake sequence is closely related to the velocity structure of the upper crust;the mainshock of the M7.0 earthquake occurred in the upper crust;the inhomogeneous variation of the velocity structure of the Jiuzhaigou earthquake area and its surrounding medium appears to be the deep structural factor controlling the spatial distribution of the mainshock and its sequence.The 3D P-wave velocity structure also suggests that the crustal low-velocity layer of northeastern SGB(Songpan-GarzêBlock)stretches into MSM(Minshan Mountain),and migrates to the northeast,but the tendency to emerge as a shallow layer is impeded by the high-velocity zone of Nanping Nappe tectonics and the Bikou Block.Our results reveal an uneven distribution of high-and low-velocity structures around the Tazang segment of the East Kunlun fault zone.Given that the rupture caused by the Jiuzhaigou earthquake has enhanced the stress fields at both ends of the seismogenic fault,it is very important to stay vigilant to possible seismic hazards in the large seismic gap at the Maqu-Maqên segment of the East Kunlun fault zone. 展开更多
关键词 the M7.0 Jiuzhaigou earthquake 3D P-wave velocity structure deep tectonic seismogenic environment
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部