The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on e...The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoti...Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.展开更多
In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide ef...In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide efficient and privacypreserving collaborative learning.However,in Io V environment,federated learning faces the challenges introduced by high mobility of vehicles and nonIndependently Identically Distribution(non-IID)of data.High mobility causes FL clients quit and the communication offline.The non-IID data leads to slow and unstable convergence of global model and single global model's weak adaptability to clients with different localization characteristics.Accordingly,this paper proposes a personalized aggregation strategy for hierarchical Federated Learning in Io V environment,including Fed SA(Special Asynchronous Federated Learning with Self-adaptive Aggregation)for low-level FL between a Road Side Unit(RSU)and the vehicles within its coverage,and Fed Att(Federated Learning with Attention Mechanism)for high-level FL between a cloud server and multiple RSUs.Agents self-adaptively obtain model aggregation weight based on Advantage Actor-Critic(A2C)algorithm.Experiments show the proposed strategy encourages vehicles to participate in global aggregation,and outperforms existing methods in training performance.展开更多
Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex ro...Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex road traffic environment of smart vehicles and other vehicles frequently experiences conflicting start and stop motion.The fine-grained scheduling of autonomous vehicles(AVs)at non-signalized intersections,which is a promising technique for exploring optimal driving paths for both assisted driving nowadays and driverless cars in the near future,has attracted significant attention owing to its high potential for improving road safety and traffic efficiency.Fine-grained scheduling primarily focuses on signalized intersection scenarios,as applying it directly to non-signalized intersections is challenging because each AV can move freely without traffic signal control.This may cause frequent driving collisions and low road traffic efficiency.Therefore,this study proposes a novel algorithm to address this issue.Our work focuses on the fine-grained scheduling of automated vehicles at non-signal intersections via dual reinforced training(FS-DRL).For FS-DRL,we first use a grid to describe the non-signalized intersection and propose a convolutional neural network(CNN)-based fast decision model that can rapidly yield a coarse-grained scheduling decision for each AV in a distributed manner.We then load these coarse-grained scheduling decisions onto a deep Q-learning network(DQN)for further evaluation.We use an adaptive learning rate to maximize the reward function and employ parameterεto tradeoff the fast speed of coarse-grained scheduling in the CNN and optimal fine-grained scheduling in the DQN.In addition,we prove that using this adaptive learning rate leads to a converged loss rate with an extremely small number of training loops.The simulation results show that compared with Dijkstra,RNN,and ant colony-based scheduling,FS-DRL yields a high accuracy of 96.5%on the sample,with improved performance of approximately 61.54%-85.37%in terms of the average conflict and traffic efficiency.展开更多
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ...As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant.展开更多
The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation mode...The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation model provides an alternative solution for quickly evaluating the performance of occupant protection systems.However,the error and rationality of the loading of the thin-walled floor in the local model cannot be ignored.This study proposed an equivalent loading method for the local model,which includes two parts:the dimensionality reduction method for acceleration matrix and the joint optimization framework for equivalent node coordinates.In the dimensionality reduction method,the dimension of the acceleration matrix was reduced based on the improved kernel principal component analysis(KPCA),and a dynamic variable bandwidth was introduced to address the limitation of failing to effectively measure the similarity between acceleration data in conventional KPCA.In addition,a least squares problem with forced displacement constraints was constructed to solve the correction matrix,thereby achieving the scale restoration process of the principal component acceleration matrix.The joint optimization framework for coordinates consists of the error assessment of response time histories(EARTH)and Bayesian optimization.In this framework,the local loading error of the equivalent acceleration matrix is taken as the Bayesian optimization objective,which is quantified and scored by EARTH.The expected improvement acquisition function was used to select the new set of the equivalent acceleration node coordinates for the self-updating optimization of the observation dataset and Gaussian process surrogate model.We reduced the dimension of the acceleration matrix from 2256 to 7,while retaining 91%of the information features.The comprehensive error score of occupant's lower limb response in the local model increased from 58.5%to 80.4%.The proposed equivalent loading method provides a solution for the rapid and reliable development of occupant protection systems.展开更多
Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems insta...Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems installed on roadways,they constitute a charging infrastructure or electrified roads(eRoads)that have many advantages.For instance,the large battery size of heavy-duty EVs can significantly be downsized due to charging-whiledriving.However,a high power demand of the DWC system,especially during traffic rush periods,could lead to voltage instability in the grid and undesirable power demand curves.In this paper,a model for the power demand is developed to predict the DWC system's power demand at various levels of EV penetration rate.The DWC power demand profile in the chosen 550 km section of a major highway in Canada is simulated.Solar photovoltaic(PV)panels are integrated with the DWC,and the integrated system is optimized to mitigate the peak power demand on the electrical grid.With solar panels of 55,000 kW rated capacity installed along roadsides in the study region,the peak power demand on the electrical grid is reduced from 167.5 to 136.1 MW or by 18.7%at an EV penetration rate of 30%under monthly average daily solar radiation in July.It is evidenced that solar PV power has effectively smoothed the peak power demand on the grid.Moreover,the locally generated renewable power could help ease off expensive grid upgrades and expansions for the eRoad.Also,the economic feasibility of the solar PV integrated DWC system is assessed using cost analysis metrics.展开更多
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl...Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.展开更多
The transportation and logistics sectors are major contributors to Greenhouse Gase(GHG)emissions.Carbon dioxide(CO_(2))from Light-Duty Vehicles(LDVs)is posing serious risks to air quality and public health.Understandi...The transportation and logistics sectors are major contributors to Greenhouse Gase(GHG)emissions.Carbon dioxide(CO_(2))from Light-Duty Vehicles(LDVs)is posing serious risks to air quality and public health.Understanding the extent of LDVs’impact on climate change and human well-being is crucial for informed decisionmaking and effective mitigation strategies.This study investigates the predictability of CO_(2)emissions from LDVs using a comprehensive dataset that includes vehicles from various manufacturers,their CO_(2)emission levels,and key influencing factors.Specifically,sixMachine Learning(ML)algorithms,ranging fromsimple linearmodels to complex non-linear models,were applied under identical conditions to ensure a fair comparison and their performance metrics were calculated.The obtained results showed a significant influence of variables such as engine size on CO_(2)emissions.Although the six algorithms have provided accurate forecasts,the Linear Regression(LR)model was found to be sufficient,achieving a Mean Absolute Percentage Error(MAPE)below 0.90%and a Coefficient of Determination(R2)exceeding 99.7%.These findings may contribute to a deeper understanding of LDVs’role in CO_(2)emissions and offer actionable insights for reducing their environmental impact.In fact,vehicle manufacturers can leverage these insights to target key emission-related factors,while policymakers and stakeholders in logistics and transportation can use the models to estimate the CO_(2)emissions of new vehicles before their market deployment or to project future emissions from current and expected LDV fleets.展开更多
As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expo...As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.展开更多
Previous studies have demonstrated that intermediate-volatility and semivolatile organic compounds(I/SVOCs) are important precursors of secondary organic aerosols. Motor vehicles are important sources of atmospheric I...Previous studies have demonstrated that intermediate-volatility and semivolatile organic compounds(I/SVOCs) are important precursors of secondary organic aerosols. Motor vehicles are important sources of atmospheric I/SVOC emissions. In this paper, existing test methods for motor vehicle I/SVOCs are summarized, the advantages and disadvantages of various sampling methods and analytical techniques are compared, and the main factors influencing motor vehicle I/SVOC emissions are analyzed. The results show that the onboard test method compensates for the shortcomings of the bench test method, reflects the emission characteristics of I/SVOCs on actual roads, and has great application potential. The identification capability of traditional gas chromatography-mass spectrometry for I/SVOCs is very limited, whereas the high sensitivity and species identification capability of comprehensive two-dimensional gas chromatography provide obvious advantages in the study of I/SVOC samples. Motor vehicle I/SVOC emissions are influenced by many factors. The individual and combined effects of different factors remain uncertain, so the importance of control variables must be more notably emphasized in future studies of influencing factors. In this paper, a systematic review is offered that could serve as a valuable reference for future research on motor vehicle I/SVOC emissions and contribute to mitigating fine particulate matter pollution.展开更多
With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness...With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance.展开更多
Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, curr...Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.展开更多
Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through s...Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through systematic analysis of 150 peer-reviewed studies employing mixed-methods research,this review yields three principal advancements to the reliability analysis of AUVs.First,based on the hierarchical functional division of AUVs into six subsystems(propulsion system,navigation system,communication system,power system,environmental detection system,and emergency system),this study systematically identifies the primary failure modes and potential failure causes of each subsystem,providing theoretical support for fault diagnosis and reliability optimization.Subsequently,a comprehensive review of AUV reliability analysis methods is conducted from three perspectives:analytical methods,simulated methods,and surrogate model methods.The applicability and limitations of each method are critically analyzed to offer insights into their suitability for engineering applications.Finally,the study highlights key challenges and research hotpots in AUV reliability analysis,including reliability analysis under limited data,AI-driven reliability analysis,and human reliability analysis.Furthermore,the potential of multi-sensor data fusion,edge computing,and advanced materials in enhancing AUV environmental adaptability and reliability is explored.展开更多
The blockchain-based audiovisual transmission systems were built to create a distributed and flexible smart transport system(STS).This system lets customers,video creators,and service providers directly connect with e...The blockchain-based audiovisual transmission systems were built to create a distributed and flexible smart transport system(STS).This system lets customers,video creators,and service providers directly connect with each other.Blockchain-based STS devices need a lot of computer power to change different video feed quality and forms into different versions and structures that meet the needs of different users.On the other hand,existing blockchains can’t support live streaming because they take too long to process and don’t have enough computer power.Large amounts of video data being sent and analyzed put too much stress on networks for vehicles.A video surveillance method is suggested in this paper to improve the performance of the blockchain system’s data and lower the latency across the multiple access edge computing(MEC)system.The integration of MEC and blockchain for video surveillance in autonomous vehicles(IMEC-BVS)framework has been proposed.To deal with this problem,the joint optimization problem is shown using the actor-critical asynchronous advantage(ACAA)method and deep reinforcement training as a Markov Choice Progression(MCP).Simulation results show that the suggested method quickly converges and improves the performance of MEC and blockchain when used together for video surveillance in self-driving cars compared to other methods.展开更多
The rapid development and application of emerging information technologies,such as big data and artificial intelligence,facilitates the development of intelligent urban rail vehicles.Architecture is an important compo...The rapid development and application of emerging information technologies,such as big data and artificial intelligence,facilitates the development of intelligent urban rail vehicles.Architecture is an important component of intelligent urban rail vehicles and a key factor in ensuring their reliable and safe operation on various routes.In this context,it is very important to select appropriate architecture design standards.The paper reviews the relevant design standards for architecture at home and abroad,comprehensively analyzes the standards that need to be compared and analyzed,and conducts comprehensive comparative analysis in the aspects of the scope of application,load conditions,vertical static load,lateral load,and evaluation methods of the standards.Finally,it draws a conclusion that the standard JIS E 4207:2019,Rolling stock—Bogie—General rules for design of bogie frame strength,can meet the requirements of strength design of welded bogie frame in intelligent urban rail vehicles.It proposes the suggestions on better validating this design method in future bench and line tests of products,in order to improve the design concept of bogie frame strength and provide reference and inspiration for promoting the development of intelligent urban rail vehicles in China.展开更多
The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailin...The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated.展开更多
To address the problem of high lifespan loss and poor state of charge(SOC)balance of electric vehicles(EVs)participating in grid peak shaving,an improved golden eagle optimizer(IGEO)algorithm for EV grouping control s...To address the problem of high lifespan loss and poor state of charge(SOC)balance of electric vehicles(EVs)participating in grid peak shaving,an improved golden eagle optimizer(IGEO)algorithm for EV grouping control strategy is proposed for peak shaving sce-narios.First,considering the difference between peak and valley loads and the operating costs of EVs,a peak shaving model for EVs is constructed.Second,the design of IGEO has improved the global exploration and local development capabilities of the golden eagle optimizer(GEO)algorithm.Subsequently,IGEO is used to solve the peak shaving model and obtain the overall EV grid connected charging and discharging instructions.Next,using the k-means algorithm,EVs are dynamically divided into priority charging groups,backup groups,and priority discharging groups based on SOC differences.Finally,a dual layer power distribution scheme for EVs is designed.The upper layer determines the charging and discharging sequences and instructions for the three groups of EVs,whereas the lower layer allocates the charging and discharging instructions for each group to each EV.The proposed strategy was simulated and verified,and the results showed that the designed IGEO had faster optimization speed and higher optimization accuracy.The pro-posed EV grouping control strategy effectively reduces the peak-valley difference in the power grid,reduces the operational life loss of EVs,and maintains a better SOC balance for EVs.展开更多
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ap...The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.展开更多
文摘The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0102)the China Scholarship Council Program(202406190114)。
文摘Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.
基金supported by the National Natural Science Foundation of China under Grant 61931005Beijing Natural Science Foundation under Grant L202018the Key Laboratory of Internet of Vehicle Technical Innovation and Testing(CAICT),Ministry of Industry and Information Technology under Grant No.KL-2023-001。
文摘In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide efficient and privacypreserving collaborative learning.However,in Io V environment,federated learning faces the challenges introduced by high mobility of vehicles and nonIndependently Identically Distribution(non-IID)of data.High mobility causes FL clients quit and the communication offline.The non-IID data leads to slow and unstable convergence of global model and single global model's weak adaptability to clients with different localization characteristics.Accordingly,this paper proposes a personalized aggregation strategy for hierarchical Federated Learning in Io V environment,including Fed SA(Special Asynchronous Federated Learning with Self-adaptive Aggregation)for low-level FL between a Road Side Unit(RSU)and the vehicles within its coverage,and Fed Att(Federated Learning with Attention Mechanism)for high-level FL between a cloud server and multiple RSUs.Agents self-adaptively obtain model aggregation weight based on Advantage Actor-Critic(A2C)algorithm.Experiments show the proposed strategy encourages vehicles to participate in global aggregation,and outperforms existing methods in training performance.
基金Supported by National Natural Science Foundation of China(Grant No.61803206)Jiangsu Provincial Natural Science Foundation(Grant No.222300420468)Jiangsu Provincial key R&D Program(Grant No.BE2017008-2).
文摘Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex road traffic environment of smart vehicles and other vehicles frequently experiences conflicting start and stop motion.The fine-grained scheduling of autonomous vehicles(AVs)at non-signalized intersections,which is a promising technique for exploring optimal driving paths for both assisted driving nowadays and driverless cars in the near future,has attracted significant attention owing to its high potential for improving road safety and traffic efficiency.Fine-grained scheduling primarily focuses on signalized intersection scenarios,as applying it directly to non-signalized intersections is challenging because each AV can move freely without traffic signal control.This may cause frequent driving collisions and low road traffic efficiency.Therefore,this study proposes a novel algorithm to address this issue.Our work focuses on the fine-grained scheduling of automated vehicles at non-signal intersections via dual reinforced training(FS-DRL).For FS-DRL,we first use a grid to describe the non-signalized intersection and propose a convolutional neural network(CNN)-based fast decision model that can rapidly yield a coarse-grained scheduling decision for each AV in a distributed manner.We then load these coarse-grained scheduling decisions onto a deep Q-learning network(DQN)for further evaluation.We use an adaptive learning rate to maximize the reward function and employ parameterεto tradeoff the fast speed of coarse-grained scheduling in the CNN and optimal fine-grained scheduling in the DQN.In addition,we prove that using this adaptive learning rate leads to a converged loss rate with an extremely small number of training loops.The simulation results show that compared with Dijkstra,RNN,and ant colony-based scheduling,FS-DRL yields a high accuracy of 96.5%on the sample,with improved performance of approximately 61.54%-85.37%in terms of the average conflict and traffic efficiency.
基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62371012in part by the Beijing Natural Science Foundation under Grant 4252001.
文摘As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272437 and 52272370)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0635)。
文摘The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation model provides an alternative solution for quickly evaluating the performance of occupant protection systems.However,the error and rationality of the loading of the thin-walled floor in the local model cannot be ignored.This study proposed an equivalent loading method for the local model,which includes two parts:the dimensionality reduction method for acceleration matrix and the joint optimization framework for equivalent node coordinates.In the dimensionality reduction method,the dimension of the acceleration matrix was reduced based on the improved kernel principal component analysis(KPCA),and a dynamic variable bandwidth was introduced to address the limitation of failing to effectively measure the similarity between acceleration data in conventional KPCA.In addition,a least squares problem with forced displacement constraints was constructed to solve the correction matrix,thereby achieving the scale restoration process of the principal component acceleration matrix.The joint optimization framework for coordinates consists of the error assessment of response time histories(EARTH)and Bayesian optimization.In this framework,the local loading error of the equivalent acceleration matrix is taken as the Bayesian optimization objective,which is quantified and scored by EARTH.The expected improvement acquisition function was used to select the new set of the equivalent acceleration node coordinates for the self-updating optimization of the observation dataset and Gaussian process surrogate model.We reduced the dimension of the acceleration matrix from 2256 to 7,while retaining 91%of the information features.The comprehensive error score of occupant's lower limb response in the local model increased from 58.5%to 80.4%.The proposed equivalent loading method provides a solution for the rapid and reliable development of occupant protection systems.
基金Funding for this work was provided by Natural Resources Canada through the Program of Energy Research and Development.
文摘Electrification of roadways using dynamic wireless charging(DWC)technology can provide an effective solution to range anxiety,high battery costs and long charging times of electric vehicles(EVs).With DWC systems installed on roadways,they constitute a charging infrastructure or electrified roads(eRoads)that have many advantages.For instance,the large battery size of heavy-duty EVs can significantly be downsized due to charging-whiledriving.However,a high power demand of the DWC system,especially during traffic rush periods,could lead to voltage instability in the grid and undesirable power demand curves.In this paper,a model for the power demand is developed to predict the DWC system's power demand at various levels of EV penetration rate.The DWC power demand profile in the chosen 550 km section of a major highway in Canada is simulated.Solar photovoltaic(PV)panels are integrated with the DWC,and the integrated system is optimized to mitigate the peak power demand on the electrical grid.With solar panels of 55,000 kW rated capacity installed along roadsides in the study region,the peak power demand on the electrical grid is reduced from 167.5 to 136.1 MW or by 18.7%at an EV penetration rate of 30%under monthly average daily solar radiation in July.It is evidenced that solar PV power has effectively smoothed the peak power demand on the grid.Moreover,the locally generated renewable power could help ease off expensive grid upgrades and expansions for the eRoad.Also,the economic feasibility of the solar PV integrated DWC system is assessed using cost analysis metrics.
文摘Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,project number MoE-IF-UJ-R2-22-20772-1.
文摘The transportation and logistics sectors are major contributors to Greenhouse Gase(GHG)emissions.Carbon dioxide(CO_(2))from Light-Duty Vehicles(LDVs)is posing serious risks to air quality and public health.Understanding the extent of LDVs’impact on climate change and human well-being is crucial for informed decisionmaking and effective mitigation strategies.This study investigates the predictability of CO_(2)emissions from LDVs using a comprehensive dataset that includes vehicles from various manufacturers,their CO_(2)emission levels,and key influencing factors.Specifically,sixMachine Learning(ML)algorithms,ranging fromsimple linearmodels to complex non-linear models,were applied under identical conditions to ensure a fair comparison and their performance metrics were calculated.The obtained results showed a significant influence of variables such as engine size on CO_(2)emissions.Although the six algorithms have provided accurate forecasts,the Linear Regression(LR)model was found to be sufficient,achieving a Mean Absolute Percentage Error(MAPE)below 0.90%and a Coefficient of Determination(R2)exceeding 99.7%.These findings may contribute to a deeper understanding of LDVs’role in CO_(2)emissions and offer actionable insights for reducing their environmental impact.In fact,vehicle manufacturers can leverage these insights to target key emission-related factors,while policymakers and stakeholders in logistics and transportation can use the models to estimate the CO_(2)emissions of new vehicles before their market deployment or to project future emissions from current and expected LDV fleets.
基金supported in part by the National Natural Science Foundation of China under Grant No.61701197in part by the National Key Research and Development Program of China under Grant No.2021YFA1000500(4)in part by the 111 project under Grant No.B23008.
文摘As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.
基金supported by the Natural Science Foundation of Beijing Municipality (No.8222041)the National Key Research and Development Program of China (No.2022YFC3700604)。
文摘Previous studies have demonstrated that intermediate-volatility and semivolatile organic compounds(I/SVOCs) are important precursors of secondary organic aerosols. Motor vehicles are important sources of atmospheric I/SVOC emissions. In this paper, existing test methods for motor vehicle I/SVOCs are summarized, the advantages and disadvantages of various sampling methods and analytical techniques are compared, and the main factors influencing motor vehicle I/SVOC emissions are analyzed. The results show that the onboard test method compensates for the shortcomings of the bench test method, reflects the emission characteristics of I/SVOCs on actual roads, and has great application potential. The identification capability of traditional gas chromatography-mass spectrometry for I/SVOCs is very limited, whereas the high sensitivity and species identification capability of comprehensive two-dimensional gas chromatography provide obvious advantages in the study of I/SVOC samples. Motor vehicle I/SVOC emissions are influenced by many factors. The individual and combined effects of different factors remain uncertain, so the importance of control variables must be more notably emphasized in future studies of influencing factors. In this paper, a systematic review is offered that could serve as a valuable reference for future research on motor vehicle I/SVOC emissions and contribute to mitigating fine particulate matter pollution.
基金supported by the Natural Science Foundation Project of Fujian Province,China(Grant No.2023J011439 and No.2019J01859).
文摘With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance.
文摘Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.
基金The National Key R&D Program Projects(Grant No.2022YFC2803601)the Natural Science Foundation of Shandong Province(Grant No.ZR2021YQ29)+1 种基金the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2024E036)the Taishan Scholars Project(Grant No.tsqn202312317).
文摘Autonomous Underwater Vehicles(AUVs)are pivotal for deep-sea exploration and resource exploitation,yet their reliability in extreme underwater environments remains a critical barrier to widespread deployment.Through systematic analysis of 150 peer-reviewed studies employing mixed-methods research,this review yields three principal advancements to the reliability analysis of AUVs.First,based on the hierarchical functional division of AUVs into six subsystems(propulsion system,navigation system,communication system,power system,environmental detection system,and emergency system),this study systematically identifies the primary failure modes and potential failure causes of each subsystem,providing theoretical support for fault diagnosis and reliability optimization.Subsequently,a comprehensive review of AUV reliability analysis methods is conducted from three perspectives:analytical methods,simulated methods,and surrogate model methods.The applicability and limitations of each method are critically analyzed to offer insights into their suitability for engineering applications.Finally,the study highlights key challenges and research hotpots in AUV reliability analysis,including reliability analysis under limited data,AI-driven reliability analysis,and human reliability analysis.Furthermore,the potential of multi-sensor data fusion,edge computing,and advanced materials in enhancing AUV environmental adaptability and reliability is explored.
文摘The blockchain-based audiovisual transmission systems were built to create a distributed and flexible smart transport system(STS).This system lets customers,video creators,and service providers directly connect with each other.Blockchain-based STS devices need a lot of computer power to change different video feed quality and forms into different versions and structures that meet the needs of different users.On the other hand,existing blockchains can’t support live streaming because they take too long to process and don’t have enough computer power.Large amounts of video data being sent and analyzed put too much stress on networks for vehicles.A video surveillance method is suggested in this paper to improve the performance of the blockchain system’s data and lower the latency across the multiple access edge computing(MEC)system.The integration of MEC and blockchain for video surveillance in autonomous vehicles(IMEC-BVS)framework has been proposed.To deal with this problem,the joint optimization problem is shown using the actor-critical asynchronous advantage(ACAA)method and deep reinforcement training as a Markov Choice Progression(MCP).Simulation results show that the suggested method quickly converges and improves the performance of MEC and blockchain when used together for video surveillance in self-driving cars compared to other methods.
文摘The rapid development and application of emerging information technologies,such as big data and artificial intelligence,facilitates the development of intelligent urban rail vehicles.Architecture is an important component of intelligent urban rail vehicles and a key factor in ensuring their reliable and safe operation on various routes.In this context,it is very important to select appropriate architecture design standards.The paper reviews the relevant design standards for architecture at home and abroad,comprehensively analyzes the standards that need to be compared and analyzed,and conducts comprehensive comparative analysis in the aspects of the scope of application,load conditions,vertical static load,lateral load,and evaluation methods of the standards.Finally,it draws a conclusion that the standard JIS E 4207:2019,Rolling stock—Bogie—General rules for design of bogie frame strength,can meet the requirements of strength design of welded bogie frame in intelligent urban rail vehicles.It proposes the suggestions on better validating this design method in future bench and line tests of products,in order to improve the design concept of bogie frame strength and provide reference and inspiration for promoting the development of intelligent urban rail vehicles in China.
基金Supported by National Natural Science Foundation of China(Grant Nos.52172383,51805081)Jiangsu Provincial Postgraduate Research&Practice Innovation Program(Grant No.KYCX22_0196)。
文摘The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated.
基金supported by the National Natural Science Foundation of China(52077078)China Southern Power Grid Company Limited 036000KK52220004(GDKJXM20220147).
文摘To address the problem of high lifespan loss and poor state of charge(SOC)balance of electric vehicles(EVs)participating in grid peak shaving,an improved golden eagle optimizer(IGEO)algorithm for EV grouping control strategy is proposed for peak shaving sce-narios.First,considering the difference between peak and valley loads and the operating costs of EVs,a peak shaving model for EVs is constructed.Second,the design of IGEO has improved the global exploration and local development capabilities of the golden eagle optimizer(GEO)algorithm.Subsequently,IGEO is used to solve the peak shaving model and obtain the overall EV grid connected charging and discharging instructions.Next,using the k-means algorithm,EVs are dynamically divided into priority charging groups,backup groups,and priority discharging groups based on SOC differences.Finally,a dual layer power distribution scheme for EVs is designed.The upper layer determines the charging and discharging sequences and instructions for the three groups of EVs,whereas the lower layer allocates the charging and discharging instructions for each group to each EV.The proposed strategy was simulated and verified,and the results showed that the designed IGEO had faster optimization speed and higher optimization accuracy.The pro-posed EV grouping control strategy effectively reduces the peak-valley difference in the power grid,reduces the operational life loss of EVs,and maintains a better SOC balance for EVs.
文摘The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.