期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Fatigue Performance of Steel-Concrete Composite Beams Under Vehicle Loads
1
作者 WANG Jiansheng ZHANG Jianmeng JIA Yumeng 《吉首大学学报(自然科学版)》 2025年第2期51-57,共7页
In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension... In order to more accurately calculate the fatigue damage and fatigue life of steel-concrete composite beam under standard vehicle load,the steel beam components of a large-span steel-concrete composite beam suspension bridge were taken as the research object.Based on the S-N curve and linear fatigue damage theory,a standard segment model was established.Accordingly,the welding position of the secondary longitudinal beam was identified as the focus fatigue point,and the stress time course calculation was done for the point.The results showed that when the vehicle mass increases from 50 t to 100 t,the amount of fatigue damage will increase by more than 5 times in the same period of time,and the increase in the vehicle mass will reduce the fatigue life of the bridge structure.The fatigue damage of bridge structures increases with the increase of vehicle speed.The increase rate of fatigue damage is greater at low speeds,and the increase rate of fatigue damage slows down at high speeds. 展开更多
关键词 steel-concrete composite beam vehicle load FATIGUE
在线阅读 下载PDF
Dynamic thermo-mechanical responses of road-soft ground system under vehicle load and daily temperature variation
2
作者 Chuxuan Tang Jie Liu +3 位作者 Zheng Lu Yang Zhao Jing Zhang Yinuo Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1722-1731,共10页
A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behav... A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system. 展开更多
关键词 Dynamic response vehicle load Daily temperature variation Thermo-poroelastic medium Coupling effects
在线阅读 下载PDF
Critical load position for cavities beneath CRCP slab under vehicle loading 被引量:3
3
作者 陈小兵 赵蓉龙 +2 位作者 童金虎 黄晓明 罗瑞林 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期78-84,共7页
In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based... In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading. 展开更多
关键词 vehicle loading CAVITY continuously reinforced concrete pavement(CRCP) critical load position finite element method(FEM)
在线阅读 下载PDF
Deflection and stress of hollow CRCP slab under concentrated vehicle load 被引量:2
4
作者 陈小兵 黄晓明 +1 位作者 丁建明 童金虎 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期213-216,共4页
Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sin... Based on the equivalence principle of deflection and stress, the concentrated vehicle load which acts on the center of continuously reinforced concrete pavement (CRCP) is translated into the equivalent half-wave sine load by the Fourier transform. On the basis of this transform and the small deflection theory of elastic thin plates, the deflection and stress formulae of CRCP under the concentrated vehicle load with a hollow foundation are put forward. The sensitivity of parameters is analyzed. The results show that maximum deflection is directly proportional to the concentrated vehicle load and the slab width, and inversely proportional to the lateral bending stiffness and slab thickness. The effects of slab width and thickness are significant with regard to maximum deflection. Maximum stress is directly proportional to the concentrated vehicle load and the slab width as well as inversely proportional to slab thickness. The effect of slab thickness is significant with regard to maximum stress. According to the calculation results, the most effective measure to reduce maximum deflection and stress is to increase slab thickness. 展开更多
关键词 concentrated vehicle load equivalence principle half-wave sine load elastic thin plates hollow continuouslyreinforced concrete pavement slab deflection and stressformulae slab thickness
在线阅读 下载PDF
Reflective cracking viscoelastic response of asphalt concrete under dynamic vehicle loading
5
作者 赵岩荆 倪富健 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期391-394,共4页
In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe... In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways. 展开更多
关键词 asphalt pavement VISCOELASTIC finite element method reflective cracking dynamic vehicle loading
在线阅读 下载PDF
Test and numerical investigations on static and dynamic characteristics of extra-wide concrete self-anchored suspension bridge under vehicle loads 被引量:8
6
作者 ZHOU Guang-pan LI Ai-qun +1 位作者 LI Jian-hui DUAN Mao-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2382-2395,共14页
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite... The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges. 展开更多
关键词 self-anchored suspension bridge extra-wide girder field test simulation vehicle loads increments distribution damping ratio mode shape dynamic impact coefficient
在线阅读 下载PDF
Finite Element Modeling and Parametric Analysis of Pavement Dynamic Responses under Moving Vehicle Load 被引量:3
7
作者 LIU Xiaolan ZHANG Xianmin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第3期490-500,共11页
This paper intends to develop finite element models that can simulate vehicle load moving on pavement system and reflect the pavement response of vehicle and pavement interaction.We conduct parametric analysis conside... This paper intends to develop finite element models that can simulate vehicle load moving on pavement system and reflect the pavement response of vehicle and pavement interaction.We conduct parametric analysis considering the influences of asphalt concrete layer modulus and thickness,base layer modulus and thickness,and subgrade modulus on pavement surface displacement,frequency,and strain response.The analysis findings are fruitful.Both the displacement basin width and maximum value of dynamic surface displacements are larger than those of static surface displacements.The frequency is positively correlated with the pavement structure moduli,and negatively correlated with the pavement structure thicknesses.The shape of dynamic and static tensile strain is similar along the depth of the pavement structure.The maximum value of dynamic tensile strain is larger than that of static tensile strain.The frequency of entire pavement structure holds more significant influence than the surface displacement and strain do.The subgrade modulus has a significant effect on surface displacement,frequency and strain. 展开更多
关键词 pavement dynamic response vehicle load surface displacement FREQUENCY STRAIN
在线阅读 下载PDF
Analysis of permanent deformations of railway embankments under repeated vehicle loadings in permafrost regions 被引量:2
8
作者 Wei Ma Tuo Chen 《Research in Cold and Arid Regions》 CSCD 2015年第6期645-653,共9页
By large-scale dynamic tests carried out on a traditional sand-gravel embankment at the Beilu River section along the Qinghai-Tibet Railroad, we collected the acceleration waveforms close to the railway tracks when tr... By large-scale dynamic tests carried out on a traditional sand-gravel embankment at the Beilu River section along the Qinghai-Tibet Railroad, we collected the acceleration waveforms close to the railway tracks when trains passed. The dynamic train loading was converted into an equivalent creep stress, using an equivalent static force method. Also, the creep equation of frozen soil was introduced according to the results of frozen soil rheological triaxial tests. A coupled creep model based on a time-hardening power function rule and the Druker-Prager yield and failure criterion was estab- lished to analyze the creep effects of a plain fill embankment under repeated train loads. The temperature field of the embankment in the permafrost area was set at the current geothermal conditions. As a result, the permanent deformation of the embankment under train loading was obtained, and the permanent deformation under the train loads to the total embankment deformation was also analyzed. 展开更多
关键词 vehicle load permanent deformation creep effect permafrost regions
在线阅读 下载PDF
Dynamic Response of Double-Sided Loess Slope under Vehicle Load 被引量:2
9
作者 LI Peng YANG Hucheng +1 位作者 SU Shengrui LIU Xiang 《Earthquake Research in China》 CSCD 2020年第4期482-495,共14页
In order to verify and study the dynamic response law on the double-sided loess slope under the action of the waves generated by automobile traffic,we select a double-sided loess slope from the long section of Anzi Ro... In order to verify and study the dynamic response law on the double-sided loess slope under the action of the waves generated by automobile traffic,we select a double-sided loess slope from the long section of Anzi Road as the research object.Both field investigations and on-site monitoring processes are conducted,for the purpose of providing robust basis for road protection in these conditions.In detail,vehicleinduced vibration signals are different according to different vehicle types,speeds,as well as positions,and thus are collected,respectively.Based on the statistical analysis of the signals,the vibration response law and frequency spectrum characteristics of the slope are summarized.The results show that:①The dynamic response of the doublesided loess slope increases as the vehicle load increases,and the strong vibration response area is located in the middle of the side slope;②When the vehicle load is small,the vibration wave amplification effect is obvious.On the contrary,when the vehicle load is large,the vibration wave amplification effect is weakened;③The spectrum distribution of the X-direction wave is single-peak shape,and the dominant frequency is concentrated in 30-50 Hz;the frequency spectrum distribution of the Zdirection wave shows a multi-peak shape,and the dominant frequency is concentrated in 20-180 Hz;④The vibration wave propagates in the slope.The frequency change shows little correlation with the type,speed and position of the vehicle,and instead,it is mainly determined by the slope itself.This study reveals the dynamic response on doubled-sided loess slopes and provides both theoretical and practical significance for the road protection in such situations. 展开更多
关键词 vehicle load Highway slope Vibration wave MONITORING Dynamic response
在线阅读 下载PDF
Anti-slip security assessment between main cable and saddle of the middle pylon under extreme vehicle loads
10
作者 Cui Jia Ruan Xin Zhou Xiaoyi 《Engineering Sciences》 EI 2011年第2期83-87,共5页
The traffic condition of Taizhou Yangtze River Bridge is obtained to a certain extent, according to the traffic investigation nearby Taizhou Bridge. The statistical characteristics of the traffic conditions are acquir... The traffic condition of Taizhou Yangtze River Bridge is obtained to a certain extent, according to the traffic investigation nearby Taizhou Bridge. The statistical characteristics of the traffic conditions are acquired by statistical analysis. Simulation of the extreme vehicle loads and the sensitive analysis of load parameters are carried out based on these data complemented, which would guide the determination of the frictional coefficient between the main cables and the saddle. 展开更多
关键词 frictional coefficient security coefficient extreme vehicle loads
在线阅读 下载PDF
Cost Impact of Increasing Heavy Vehicle Loads on Bridges
11
作者 Adel Elfayoumy Nasim Uddin 《Journal of Civil Engineering and Architecture》 2015年第10期1167-1178,共12页
This study aimed to investigate the cost impact of meeting the increase in freight demand by doubling the truck weight (AS 1 ), doubling the traffic volume (AS2), or legalizing a new-proposed-truck of 97-kip weigh... This study aimed to investigate the cost impact of meeting the increase in freight demand by doubling the truck weight (AS 1 ), doubling the traffic volume (AS2), or legalizing a new-proposed-truck of 97-kip weight instead of the currently legal 80-kip truck (AS3). The State of Michigan's average daily traffic database of year 2001 has been used as a case study. The study was applied only on the very common US Bridge with RC (reinforced concrete) deck over steel girder. Sampling criteria also includes the age of the bridges. The study covered the four-cost-impact categories provided by the NCHRP (National Cooperative Research Program). The current truck weight and double traffic volume (AS2) show the best scenario to meet the increase in freight demand. However, doubling the truck weight with the current traffic volume (AS 1) was the worst scenario. The use of the proposed 97-kip truck with the current traffic volume (AS3) compromises both, meeting the increase in freight demand and the cost impact. 展开更多
关键词 Increasing heavy vehicle load cost impact LCC (life-cycle cost).
在线阅读 下载PDF
Models and methods for dynamic response of 3D flexible and rigid pavements to moving loads:A review by representative examples
12
作者 Edmond V.Muho Niki D.Beskou Jiang Qian 《Journal of Road Engineering》 2025年第1期65-91,共27页
This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes th... This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made. 展开更多
关键词 Flexible pavements Rigid(concrete)pavements Moving vehicle loads Three dimensional models LINEARITY Dynamic response
在线阅读 下载PDF
Analysis of Hydraulic Lifting Device for Wind Power Tower Loading and Unloading Vehicle
13
作者 HUANG Longheng LEI Yi YANG Xueliang 《外文科技期刊数据库(文摘版)工程技术》 2021年第12期1109-1112,共6页
In the construction of wind power tower, the loading and unloading operation of tower is basically involved. However, due to the large size of wind power tower and its great characteristics in weight, it is necessary ... In the construction of wind power tower, the loading and unloading operation of tower is basically involved. However, due to the large size of wind power tower and its great characteristics in weight, it is necessary to use two gantry cranes to handle the tower crane at the same time, so as to effectively meet the transportation and handling of loading and unloading vehicles. However, in the actual construction, it is often affected by the heavy operation of the equipment. Therefore, based on this situation, this paper studies the hydraulic lifting device for wind power tower loading and unloading vehicle, in order to ensure that the device can play its due role in operation. 展开更多
关键词 wind power tower loading and unloading vehicles hydraulic lifting device CRANE lifting rod
原文传递
Simulation of Restraint Device Degradation of Long-Span Suspension Bridge Based on Finite Element Model 被引量:1
14
作者 Qiaowei Ye Ying Peng +3 位作者 Zihang Wang Chao Deng Xiang Xu Yuan Ren 《Structural Durability & Health Monitoring》 2025年第4期851-868,共18页
The girder end restraint devices such as bearings and dampers on long span suspension bridge will deteriorate over time.However,it is difficult to achieve the quantitative assessment of the performance of the restrain... The girder end restraint devices such as bearings and dampers on long span suspension bridge will deteriorate over time.However,it is difficult to achieve the quantitative assessment of the performance of the restraint device through existing detection methods in actual inspections,making it difficult to obtain the impact of changes in the performance of the restraint device on the bridge structure.In this paper,a random vehicle load model is firstly established based on the WIM data of Jiangyin Bridge,and the displacement of girder end under the actual traffic flow is simulated by using finite element dynamic time history analysis.On this basis,according to the performance test data of the bearings and dampers,the performance degradation laws of the above two restraint devices are summarized,and the performance degradation process of the two restraint devices and the effects of different restraint parameters on the bridge structure are simulated.The results show that the performance degradation of the damper will significantly reduce the damping force at low speed,resulting in a significant increase in the cumulative displacement of the girder end;in the presence of longitudinal dampers,the increase in the friction coefficient caused by the deterioration of the bearing sliding plate has little effect on the cumulative displacement,but excessive wear of the bearing sliding plate adversely affects the structural dynamic performance. 展开更多
关键词 Suspension bridge longitudinal displacement of girder end random vehicle load model deterioration of restraint devices
在线阅读 下载PDF
Selection and Parameter Optimization of Constraint Systems for Girder-End Longitudinal Displacement Control inThree-Tower Suspension Bridges
15
作者 Zihang Wang Ying Peng +3 位作者 Xiong Lan Xiaoyu Bai Chao Deng Yuan Ren 《Structural Durability & Health Monitoring》 2025年第3期643-664,共22页
To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engi... To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2. 展开更多
关键词 Three-tower suspension bridge vehicle loads longitudinal constraint system viscous damper multiobjective parameter optimization
在线阅读 下载PDF
Maximum Probabilistic and Dynamic Traffic Load Effects onShort-to-Medium Span Bridges 被引量:2
16
作者 Naiwei Lu Honghao Wang +1 位作者 Kai Wang Yang Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期345-360,共16页
The steadily growing traffic load has resulted in lots of bridge collapse events over the past decades, especiallyfor short-to-medium span bridges. This study investigated probabilistic and dynamic traffic load effect... The steadily growing traffic load has resulted in lots of bridge collapse events over the past decades, especiallyfor short-to-medium span bridges. This study investigated probabilistic and dynamic traffic load effects on shortto-medium span bridges using practical heavy traffic data in China. Mathematical formulations for traffic-bridgecoupled vibration and probabilistic extrapolation were derived. A framework for extrapolating probabilistic anddynamic traffic load effect was presented to conduct an efficient and accurate extrapolation. An equivalent dynamicwheel load model was demonstrated to be feasible for short-to-medium span bridges. Numerical studies of twotypes of simply-supported bridges were conducted based on site-specific traffic monitoring data. Numerical resultsshow that the simulated samples and fitting lines follow a curve line in the Gumbel distribution coordinate system. Itcan be assumed that dynamic traffic load effects follow Gaussian distribution and the extreme value follows Gumbeldistribution. The equivalent probabilistic amplification factor is smaller than the individual dynamic amplificationfactor, which might be due to the variability of individual samples. Eurocode 1 is the most conservative specificationon vehicle load models, followed by the BS5400 specification. The D60-2015 specification in China and ASSHTOspecification provide lower conservative traffic load models. 展开更多
关键词 Bridge engineering vehicle load extreme value EXTRAPOLATION stochastic traffic flow
在线阅读 下载PDF
Research on the Dynamic Response of Submerged Floating Tunnels to Wave Currents and Traffic Load 被引量:1
17
作者 Bolin Jiang Shanshan Wu +1 位作者 Min Ji Bo Liang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期159-173,共15页
Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element me... Submerged floating tunnel(SFTs)are typically subjected to complex external environmental and internal loads such as wave currents and traffic load.In this study,this problem is investigated through a finite element method able to account for fluid-structure interaction.The obtained results show that increasing the number of vehicles per unit length enhances the transverse vibrational displacements of the SFT cross sections.Under ultimate traffic load condition,one-way and two-way syntropic distributions can promote the dynamic responses of SFTs whereas two-way reverse distributions have the opposite effect. 展开更多
关键词 Submerged floating tunnel vehicle load dynamic response wave and current loads fluid-structure interaction
在线阅读 下载PDF
A Heuristic Method for Vehicle Scheduling Problems
18
作者 Guo Yaohuang Jun Tong Shuliul(School of Economics and Management,School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China ) 《Journal of Modern Transportation》 1995年第1期1-8,共8页
This paper presents a sequential optimum algorithm for vehicle schedulingproblem, which includes obtaining initial theoretical solution, adjustingsolution, forming initial routes and adjustins routes. This method can ... This paper presents a sequential optimum algorithm for vehicle schedulingproblem, which includes obtaining initial theoretical solution, adjustingsolution, forming initial routes and adjustins routes. This method can beapplied to general transportation problems with multiple depots and multiplevehicle types on complex network. In comparison with manual scheduling ofChengdu Transportation Company II, the result shows that this method isreasonable, feasible and applicable. 展开更多
关键词 vehicle schedule sequential optimum loaded point acceptable solution vehicle travelling route
在线阅读 下载PDF
Temperature-induced structural static responses of a long-span steel box girder suspension bridge 被引量:5
19
作者 Lin-ren ZHOU Lan CHEN +1 位作者 Yong XIA Ki Young KOO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第7期580-592,共13页
Temperature is a significant load on bridges,particularly for long-span steel box girder bridges.This study investigates the temperature-induced static responses of a long-span suspension bridge under real service env... Temperature is a significant load on bridges,particularly for long-span steel box girder bridges.This study investigates the temperature-induced static responses of a long-span suspension bridge under real service environmental conditions using numerical simulations and field measurements.Detailed 2 D finite element(FE)models of a typical section for the box girder,main cable,hanger,tower column,and crossbeam are constructed.The thermal boundary conditions are determined strictly according to the surrounding environments of a typical sunny day and applied to the FE models.A transient heat-transfer analysis is performed and the time-dependent temperature and its distribution on the bridge are obtained.In addition,a fine,3 D FE model of the bridge is developed for a structural analysis.The calculated temperatures are applied to the 3 D model and the temperature-induced structural responses are simulated.The simulated temperatures and the associated static responses have good agreement with the measured counterparts and support the numerical simulation method.The main cable and bridge deck make the greatest contributions to the temperature effects on the suspension bridge.The static responses of bridge caused by the design vehicle load are also calculated.The daily variation of the temperature-induced static responses is comparable with,even higher than,that of the design vehicle load. 展开更多
关键词 Long-span suspension bridge Temperature effect Static response vehicle load Field monitoring
原文传递
Investigation of Micro-mechanical Response of Asphalt Mixtures by a Three-dimensional Discrete Element Model 被引量:1
20
作者 侯曙光 ZHANG Dong +1 位作者 HUANG Xiaoming ZHAO Yongli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期338-343,共6页
The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. ... The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view. 展开更多
关键词 asphalt mixture discrete element method micro-mechanical response vehicle load contact force displacement
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部