Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy o...Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.展开更多
MacCormack explicit scheme and Baldwin-Lomax algebraic turbulent model are employed to solve the axisymmetric compressible Navier-Stokes equations for the numerical simulation of the supersonic mustanl floats interact...MacCormack explicit scheme and Baldwin-Lomax algebraic turbulent model are employed to solve the axisymmetric compressible Navier-Stokes equations for the numerical simulation of the supersonic mustanl floats interacted with transverse injection at the base of a cone. A temperature switch function must be added to the artificial viscous model suggested by jameson etc to enhance the scheme's ability to eliminate oscillation for some injection case.The typical code optimization techniques about vectorization and some useful concepts and terminology about multiprocessing of YH-2 parallel supercmputer is given and explatined with some examples After reconstruction and optimization the code gets a spedup 5 .973 on pipeline computer YH- 1 and gets a speedup 1 886 for 2 processors and 3.545 for 4 processors on YH-2 parallel supeercomputer by using domain decomposition method..展开更多
The explosive growth of social media means portrait editing and retouching are in high demand.While portraits are commonly captured and stored as raster images,editing raster images is non-trivial and requires the use...The explosive growth of social media means portrait editing and retouching are in high demand.While portraits are commonly captured and stored as raster images,editing raster images is non-trivial and requires the user to be highly skilled.Aiming at developing intuitive and easy-to-use portrait editing tools,we propose a novel vectorization method that can automatically convert raster images into a 3-tier hierarchical representation.The base layer consists of a set of sparse diffusion curves(DCs)which characterize salient geometric features and low-frequency colors,providing a means for semantic color transfer and facial expression editing.The middle level encodes specular highlights and shadows as large,editable Poisson regions(PRs)and allows the user to directly adjust illumination by tuning the strength and changing the shapes of PRs.The top level contains two types of pixel-sized PRs for high-frequency residuals and fine details such as pimples and pigmentation.We train a deep generative model that can produce high-frequency residuals automatically.Thanks to the inherent meaning in vector primitives,editing portraits becomes easy and intuitive.In particular,our method supports color transfer,facial expression editing,highlight and shadow editing,and automatic retouching.To quantitatively evaluate the results,we extend the commonly used FLIP metric(which measures color and feature differences between two images)to consider illumination.The new metric,illumination-sensitive FLIP,can effectively capture salient changes in color transfer results,and is more consistent with human perception than FLIP and other quality measures for portrait images.We evaluate our method on the FFHQR dataset and show it to be effective for common portrait editing tasks,such as retouching,light editing,color transfer,and expression editing.展开更多
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtain...Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.展开更多
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite...The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.展开更多
The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collect...The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.展开更多
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c...Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.展开更多
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie...Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
Vector graphics plays an important role in computer animation and imaging technologies. However present techniques and tools cannot fully replace traditional pencil and paper. Additionally, vector representation of an...Vector graphics plays an important role in computer animation and imaging technologies. However present techniques and tools cannot fully replace traditional pencil and paper. Additionally, vector representation of an image is not always available. There is not yet a good solution for vectorizing a picture drawn on a paper. This work attempts to solve the problem of vectorizing grayscale line drawings. The solution proposed uses Disk B-Spline curves to represent strokes of an image in vector form. The algorithm builds a vector representation from a grayscale raster image, which can be a scanned picture for instance. The proposed method uses a Gaussian sliding window to calculate skeleton and perceptive width of a stroke. As a result of vectorization, the given image is represented by a set of Disk B-Spline curves.展开更多
Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion...Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.展开更多
To enhance network security,this study employs a deep graph matching model for vulnerability similarity detection.The model utilizes a Word Embedding layer to vectorize data words,an Image Embedding layer to vectorize...To enhance network security,this study employs a deep graph matching model for vulnerability similarity detection.The model utilizes a Word Embedding layer to vectorize data words,an Image Embedding layer to vectorize data graphs,and an LSTM layer to extract the associations between word and graph vectors.A Dropout layer is applied to randomly deactivate neurons in the LSTM layer,while a Softmax layer maps the LSTM analysis results.Finally,a fully connected layer outputs the detection results with a dimension of 1.Experimental results demonstrate that the AUC of the deep graph matching vulnerability similarity detection model is 0.9721,indicating good stability.The similarity scores for vulnerabilities such as memory leaks,buffer overflows,and targeted attacks are close to 1,showing significant similarity.In contrast,the similarity scores for vulnerabilities like out-of-bounds memory access and logical design flaws are less than 0.4,indicating good similarity detection performance.The model’s evaluation metrics are all above 97%,with high detection accuracy,which is beneficial for improving network security.展开更多
Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the eva...Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.展开更多
To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the ste...To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.展开更多
In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates ...The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials.While these failures have many possible explanations,it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.In other words,the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials.However,this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes.Although still facing several limitations,these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy,delineating a more optimistic scenario for the near future.展开更多
Mosquitoes(Diptera:Culicidae)are vectors of various pathogens of public health concern,but replacing conventional insecticides remains a challenge.In this regard,natural products represent valuable sources of potentia...Mosquitoes(Diptera:Culicidae)are vectors of various pathogens of public health concern,but replacing conventional insecticides remains a challenge.In this regard,natural products represent valuable sources of potential insecticidal compounds,thus increasingly attracting research interest.Commiphora myrrha(T.Nees)Engl.(Burseraceae)is a medicinal plant whose oleo-gum resin is used in food,cosmetics,fragrances,and pharmaceuticals.Herein,the larvicidal potential of its essential oil(EO)was assessed on four mosquito species(Aedes albopictus Skuse,Ae.aegypti L.,Anopheles gambiae Giles and An.stephensi Liston),with LC_(50) values ranging from 4.42 to 16.80 μg/mL.The bio-guided EO fractionation identified furanosesquiterpenes as the main larvicidal compounds.A GC-MS-driven untargeted metabolomic analysis revealed 32 affected metabolic pathways in treated larvae.The EO non-target toxicity on Daphnia magna Straus(LC_(50)=4.51 μL/L)and its cytotoxicity on a human kidney cell line(HEK293)(IC50 of 14.38 μg/mL)were also assessed.This study shows the potential of plant products as innovative insecticidal agents and lays the ground-work for the possible exploitation of C.myrrha EO in the sustainable approaches for mosquito management.展开更多
基金Supported by the National Natural Science Foundation of China (61074153, 61104131)the Fundamental Research Fundsfor Central Universities of China (ZY1111, JD1104)
文摘Chemical processes are complex, for which traditional neural network models usually can not lead to satisfactory accuracy. Selective neural network ensemble is an effective way to enhance the generalization accuracy of networks, but there are some problems, e.g., lacking of unified definition of diversity among component neural networks and difficult to improve the accuracy by selecting if the diversities of available networks are small. In this study, the output errors of networks are vectorized, the diversity of networks is defined based on the error vectors, and the size of ensemble is analyzed. Then an error vectorization based selective neural network ensemble (EVSNE) is proposed, in which the error vector of each network can offset that of the other networks by training the component networks orderly. Thus the component networks have large diversity. Experiments and comparisons over standard data sets and actual chemical process data set for production of high-density polyethylene demonstrate that EVSNE performs better in generalization ability.
文摘MacCormack explicit scheme and Baldwin-Lomax algebraic turbulent model are employed to solve the axisymmetric compressible Navier-Stokes equations for the numerical simulation of the supersonic mustanl floats interacted with transverse injection at the base of a cone. A temperature switch function must be added to the artificial viscous model suggested by jameson etc to enhance the scheme's ability to eliminate oscillation for some injection case.The typical code optimization techniques about vectorization and some useful concepts and terminology about multiprocessing of YH-2 parallel supercmputer is given and explatined with some examples After reconstruction and optimization the code gets a spedup 5 .973 on pipeline computer YH- 1 and gets a speedup 1 886 for 2 processors and 3.545 for 4 processors on YH-2 parallel supeercomputer by using domain decomposition method..
基金This project was supported by the Ministry of Education,Singapore,under its Academic Research Fund Tier 1(RG20/20)the National Natural Science Foundation of China(61872347)the Special Plan for the Development of Distinguished Young Scientists of ISCAS(Y8RC535018).
文摘The explosive growth of social media means portrait editing and retouching are in high demand.While portraits are commonly captured and stored as raster images,editing raster images is non-trivial and requires the user to be highly skilled.Aiming at developing intuitive and easy-to-use portrait editing tools,we propose a novel vectorization method that can automatically convert raster images into a 3-tier hierarchical representation.The base layer consists of a set of sparse diffusion curves(DCs)which characterize salient geometric features and low-frequency colors,providing a means for semantic color transfer and facial expression editing.The middle level encodes specular highlights and shadows as large,editable Poisson regions(PRs)and allows the user to directly adjust illumination by tuning the strength and changing the shapes of PRs.The top level contains two types of pixel-sized PRs for high-frequency residuals and fine details such as pimples and pigmentation.We train a deep generative model that can produce high-frequency residuals automatically.Thanks to the inherent meaning in vector primitives,editing portraits becomes easy and intuitive.In particular,our method supports color transfer,facial expression editing,highlight and shadow editing,and automatic retouching.To quantitatively evaluate the results,we extend the commonly used FLIP metric(which measures color and feature differences between two images)to consider illumination.The new metric,illumination-sensitive FLIP,can effectively capture salient changes in color transfer results,and is more consistent with human perception than FLIP and other quality measures for portrait images.We evaluate our method on the FFHQR dataset and show it to be effective for common portrait editing tasks,such as retouching,light editing,color transfer,and expression editing.
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金supported by National Natural Science Foundation of China(12374358,91950207)Guangdong Basic and Applied Basic Research Foundation(2024A1515010420).
文摘Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.
基金the National Key Research and Development Program of China(2021YFC2900300)the Natural Science Foundation of Guangdong Province(2024A1515030216)+2 种基金MOST Special Fund from State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(GPMR202437)the Guangdong Province Introduced of Innovative R&D Team(2021ZT09H399)the Third Xinjiang Scientific Expedition Program(2022xjkk1301).
文摘The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits.
基金supported by the National Key R&D Program of China(Grant2022YFF0503700)the National Natural Science Foundation of China(42474200 and 42174186)。
文摘The Macao Science Satellite-1(known as MSS-1)is the first scientific exploration satellite that was designed to measure the Earth's low latitude magnetic field at high resolution and with high precision by collecting data in a near-equatorial orbit.Magnetic field data from MSS-1's onboard Vector Fluxgate Magnetometer(VFM),collected at a sample rate of 50 Hz,allows us to detect and investigate sources of magnetic data contamination,from DC to relevant Nyquist frequency.Here we report two types of artificial disturbances in the VFM data.One is V-shaped events concentrated at night,with frequencies sweeping from the Nyquist frequency down to zero and back up.The other is 5-Hz events(ones that exhibit a distinct 5 Hz spectrum peak);these events are always accompanied by intervals of spiky signals,and are clearly related to the attitude control of the satellite.Our analyses show that VFM noise levels in daytime are systematically lower than in nighttime.The daily average noise levels exhibit a period of about 52 days.The V-shaped events are strongly correlated with higher VFM noise levels.
基金funded by the Natural Science Foundation of China(Grant Nos.42377164 and 41972280)the Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202305).
文摘Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain conditioning factor selection method rather than systematically study this uncertainty issue.Targeted,this study aims to systematically explore the influence rules of various commonly used conditioning factor selection methods on LSP,and on this basis to innovatively propose a principle with universal application for optimal selection of conditioning factors.An'yuan County in southern China is taken as example considering 431 landslides and 29 types of conditioning factors.Five commonly used factor selection methods,namely,the correlation analysis(CA),linear regression(LR),principal component analysis(PCA),rough set(RS)and artificial neural network(ANN),are applied to select the optimal factor combinations from the original 29 conditioning factors.The factor selection results are then used as inputs of four types of common machine learning models to construct 20 types of combined models,such as CA-multilayer perceptron,CA-random forest.Additionally,multifactor-based multilayer perceptron random forest models that selecting conditioning factors based on the proposed principle of“accurate data,rich types,clear significance,feasible operation and avoiding duplication”are constructed for comparisons.Finally,the LSP uncertainties are evaluated by the accuracy,susceptibility index distribution,etc.Results show that:(1)multifactor-based models have generally higher LSP performance and lower uncertainties than those of factors selection-based models;(2)Influence degree of different machine learning on LSP accuracy is greater than that of different factor selection methods.Conclusively,the above commonly used conditioning factor selection methods are not ideal for improving LSP performance and may complicate the LSP processes.In contrast,a satisfied combination of conditioning factors can be constructed according to the proposed principle.
基金supported by the Deanship of Graduate Studies and Scientific Research at University of Bisha for funding this research through the promising program under grant number(UB-Promising-33-1445).
文摘Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
文摘Vector graphics plays an important role in computer animation and imaging technologies. However present techniques and tools cannot fully replace traditional pencil and paper. Additionally, vector representation of an image is not always available. There is not yet a good solution for vectorizing a picture drawn on a paper. This work attempts to solve the problem of vectorizing grayscale line drawings. The solution proposed uses Disk B-Spline curves to represent strokes of an image in vector form. The algorithm builds a vector representation from a grayscale raster image, which can be a scanned picture for instance. The proposed method uses a Gaussian sliding window to calculate skeleton and perceptive width of a stroke. As a result of vectorization, the given image is represented by a set of Disk B-Spline curves.
基金performed at large-scale research facility"Beam-M"of Bauman Moscow State Technical University following the government task by the Ministry of Science and Higher Education of the Russian Federation(No.FSFN-2024-0007).
文摘Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.
基金Special Project Funded by Tsinghua University Press:“Engineering Drawing and CAD”Course Construction and Textbook Development。
文摘To enhance network security,this study employs a deep graph matching model for vulnerability similarity detection.The model utilizes a Word Embedding layer to vectorize data words,an Image Embedding layer to vectorize data graphs,and an LSTM layer to extract the associations between word and graph vectors.A Dropout layer is applied to randomly deactivate neurons in the LSTM layer,while a Softmax layer maps the LSTM analysis results.Finally,a fully connected layer outputs the detection results with a dimension of 1.Experimental results demonstrate that the AUC of the deep graph matching vulnerability similarity detection model is 0.9721,indicating good stability.The similarity scores for vulnerabilities such as memory leaks,buffer overflows,and targeted attacks are close to 1,showing significant similarity.In contrast,the similarity scores for vulnerabilities like out-of-bounds memory access and logical design flaws are less than 0.4,indicating good similarity detection performance.The model’s evaluation metrics are all above 97%,with high detection accuracy,which is beneficial for improving network security.
基金primarily supported by the National Key R&D Program of China[grant number 2021YFC3000904]the Jiangsu Provincial Key Technology R&D Program[grant number BE2022851]National Natural Science Foundation of China[grant number 42405035]。
文摘Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.
文摘To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.
基金supported by the National key R and D Program of China 2020YFA0713100the NSFC(12141104,12371062 and 12431004).
文摘In this paper,we obtain a vector bundle valued mixed hard Lefschetz theorem.The argument is mainly based on the works of Tien-Cuong Dinh and Viet-Anh Nguyen.
基金supported by grants PID2020-120308RB-I00 and PID2023-147802OB-I00 funded by MICIU/AEI/10.13039/501100011033FEDER,UE,by Aligning Science Across Parkinson’s(ref.ASAP-020505)through the Michael J.Fox Foundation for Parkinson’s Research+1 种基金by CiberNed Intramural Collaborative Projects(ref.PI2020/09)by the Spanish Fundación Mutua Madrile?a de Investigación Médica(to JLL)。
文摘The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor,but extremely challenging.Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials.While these failures have many possible explanations,it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.In other words,the lack of adequate animal models of Parkinson's disease currently represents the main barrier to preclinical identification of potential disease-modifying therapies likely to succeed in clinical trials.However,this barrier may be overcome by the recent introduction of novel generations of viral vectors coding for different forms of alpha-synuclein species and related genes.Although still facing several limitations,these models have managed to mimic the known neuropathological hallmarks of Parkinson's disease with unprecedented accuracy,delineating a more optimistic scenario for the near future.
基金granted by the project PRIN 2022“Bioformulations for controlled release of botanical pesticides for sustainable agriculture”(prot.202274BK9L)supported by the Italian Ministry of University and Research(MUR)the Technology agency of the Czech Republic for its financial support concerning botanical pesticide(Project No.FW06010376).
文摘Mosquitoes(Diptera:Culicidae)are vectors of various pathogens of public health concern,but replacing conventional insecticides remains a challenge.In this regard,natural products represent valuable sources of potential insecticidal compounds,thus increasingly attracting research interest.Commiphora myrrha(T.Nees)Engl.(Burseraceae)is a medicinal plant whose oleo-gum resin is used in food,cosmetics,fragrances,and pharmaceuticals.Herein,the larvicidal potential of its essential oil(EO)was assessed on four mosquito species(Aedes albopictus Skuse,Ae.aegypti L.,Anopheles gambiae Giles and An.stephensi Liston),with LC_(50) values ranging from 4.42 to 16.80 μg/mL.The bio-guided EO fractionation identified furanosesquiterpenes as the main larvicidal compounds.A GC-MS-driven untargeted metabolomic analysis revealed 32 affected metabolic pathways in treated larvae.The EO non-target toxicity on Daphnia magna Straus(LC_(50)=4.51 μL/L)and its cytotoxicity on a human kidney cell line(HEK293)(IC50 of 14.38 μg/mL)were also assessed.This study shows the potential of plant products as innovative insecticidal agents and lays the ground-work for the possible exploitation of C.myrrha EO in the sustainable approaches for mosquito management.