This paper presents a real-time implementation of 4.2Kb/s CELP speech coding on single DSP chip. An algorithm reducing search complexity for adaptive codebook is suggested; the solving method that the parameters are c...This paper presents a real-time implementation of 4.2Kb/s CELP speech coding on single DSP chip. An algorithm reducing search complexity for adaptive codebook is suggested; the solving method that the parameters are changed into LSP parameters is discussed. The realtime implementation process of this coding on a commercial development board with a single TMS320C30 is described.展开更多
Lattice vector quantization (LVQ) has been used for real-time speech and audio coding systems. Compared with conventional vector quantization, LVQ has two main advantages: It has a simple and fast encoding process,...Lattice vector quantization (LVQ) has been used for real-time speech and audio coding systems. Compared with conventional vector quantization, LVQ has two main advantages: It has a simple and fast encoding process, and it significantly reduces the amount of memory required. Therefore, LVQ is suitable for use in low-complexity speech and audio coding. In this paper, we describe the basic concepts of LVQ and its advantages over conventional vector quantization. We also describe some LVQ techniques that have been used in speech and audio coding standards of international standards developing organizations (SDOs).展开更多
A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set r...A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set recognition. It has less complexity, less resource consumption but higher ARR (accurate recognition rate) compared with traditional HMM or NN approach. A large scale test on the task of 11 mandarin digits recognition shows that the WER(word error rate) can reach 3 86%. This method is suitable for being embedded in PDA (personal digital assistant), mobile phone and so on to perform voice controlling like digits dialing, name dialing, calculating, voice commanding, etc.展开更多
In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, first...In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, firstly we theoretically create a systematically organized codebook. Combined with another codebook created by Kohonen’s Self-Organizing Maps (SOM) method, an optimized codebook consisted of 2×2 codevectors for facial images is generated. Experimental results show face recognition using such a codebook is more efficient than the codebook consisted of 4×4 codevector used in conventional algorithm. The highest average recognition rate of 98.6% is obtained for 40 persons’ 400 images of publicly available face database of AT&T Laboratories Cambridge containing variations in lighting, posing, and expressions. A table look-up (TLU) method is also proposed for the speed up of the recognition processing. By applying this method in the quantization step, the total recognition processing time achieves only 28 msec, enabling real-time face recognition.展开更多
文摘This paper presents a real-time implementation of 4.2Kb/s CELP speech coding on single DSP chip. An algorithm reducing search complexity for adaptive codebook is suggested; the solving method that the parameters are changed into LSP parameters is discussed. The realtime implementation process of this coding on a commercial development board with a single TMS320C30 is described.
文摘Lattice vector quantization (LVQ) has been used for real-time speech and audio coding systems. Compared with conventional vector quantization, LVQ has two main advantages: It has a simple and fast encoding process, and it significantly reduces the amount of memory required. Therefore, LVQ is suitable for use in low-complexity speech and audio coding. In this paper, we describe the basic concepts of LVQ and its advantages over conventional vector quantization. We also describe some LVQ techniques that have been used in speech and audio coding standards of international standards developing organizations (SDOs).
文摘A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set recognition. It has less complexity, less resource consumption but higher ARR (accurate recognition rate) compared with traditional HMM or NN approach. A large scale test on the task of 11 mandarin digits recognition shows that the WER(word error rate) can reach 3 86%. This method is suitable for being embedded in PDA (personal digital assistant), mobile phone and so on to perform voice controlling like digits dialing, name dialing, calculating, voice commanding, etc.
文摘In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, firstly we theoretically create a systematically organized codebook. Combined with another codebook created by Kohonen’s Self-Organizing Maps (SOM) method, an optimized codebook consisted of 2×2 codevectors for facial images is generated. Experimental results show face recognition using such a codebook is more efficient than the codebook consisted of 4×4 codevector used in conventional algorithm. The highest average recognition rate of 98.6% is obtained for 40 persons’ 400 images of publicly available face database of AT&T Laboratories Cambridge containing variations in lighting, posing, and expressions. A table look-up (TLU) method is also proposed for the speed up of the recognition processing. By applying this method in the quantization step, the total recognition processing time achieves only 28 msec, enabling real-time face recognition.