In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as c...In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.展开更多
In the paper [Monotone countable paracompactness and maps to ordered topological vector spaces, Top. Appl., 2014, 169(3): 51–70], Yamazaki initiated the study on maps with values into ordered topological vector sp...In the paper [Monotone countable paracompactness and maps to ordered topological vector spaces, Top. Appl., 2014, 169(3): 51–70], Yamazaki initiated the study on maps with values into ordered topological vector spaces. Characterizations of monotonically countably paracompact spaces and some other spaces in terms of maps to ordered topological vector spaces were obtained. In this paper, following Yamazaki's method, we present some characterizations of stratifiable spaces and k-semi-stratifiable spaces in terms of maps with values into ordered topological vector spaces.展开更多
A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the second order vector potential (SOVP) formalism which introduces two scalar potentia...A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the second order vector potential (SOVP) formalism which introduces two scalar potentials in order to obtain analytical expressions of the electromagnetic fields from the two potentials. However, the scalar decomposition is often known for canonical coordinate systems. This paper aims in introducing a specific SOVP formulation dedicated to arbitrary non-orthogonal curvilinear coordinates systems. The electromagnetic field representation which is derived in this paper constitutes the key stone for the development of semi-analytical models for solving some eddy currents moelling problems and electromagnetic radiation problems considering at least two homogeneous media separated by a rough interface. This SOVP formulation is derived from the tensor formalism and Maxwell’s equations written in a non-orthogonal coordinates system adapted to a surface characterized by a 2D arbitrary aperiodic profile.展开更多
The stationary probability vectors of a second order Markov chain on the(n-1)-dimensional standard simplex are considered.In 2015,Li and Zhang gave a characterization of the second order Markov chain such that every v...The stationary probability vectors of a second order Markov chain on the(n-1)-dimensional standard simplex are considered.In 2015,Li and Zhang gave a characterization of the second order Markov chain such that every vector in the simplex is a stationary vector.A modification of the characterization is presented in the paper.Some sufficient conditions are derived for any facet of the simplex such that every vector of the facet is a stationary vector.展开更多
In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduc...In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduced and sufficient optimality results are proved involving these classes. Also, a unified dual is associated with the considered primal problem, and weak and strong duality results are established.展开更多
Mathematical morphology can process the binary and grayscale image successfully. This theory cannot be extended to the color image directly. In color space, a vector represents a pixel, so in order to compare vectors,...Mathematical morphology can process the binary and grayscale image successfully. This theory cannot be extended to the color image directly. In color space, a vector represents a pixel, so in order to compare vectors, vectoriel orderings must be defined first. This paper addresses the question of the extension of morphological operator to the case of color images. The proposed method used the order by bit mixing to replace the conditional order. Our order is based on a combination of reduced and bit mixing ordering of the underlying data. Additionally it is a total ordering. Since it not only solves the problems of false color generated by the marginal order but also those of multiple extrema generated by reduced order. The performance of the introduced operators is illustrated by means of different applications: color gradients for segmenting, image smoothing (noise suppression) by median filter operator and Laplacian operators. Examples of natural color images and synthetic color images are given. Experimental results show the improvement brought by this new method.展开更多
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in...The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.展开更多
Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the und...Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.展开更多
We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem wit...We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem with the well-known from combinatorial topology Sperner’s lemma. We also notice that our geometric approach is strongly based on the associated vector field.展开更多
Epilepsy is the most common neuropathology. Statistical studies related to the disease reported that 20% - 25% of epileptic patients with occurrence of seizures were even under treatment with drugs. This article prese...Epilepsy is the most common neuropathology. Statistical studies related to the disease reported that 20% - 25% of epileptic patients with occurrence of seizures were even under treatment with drugs. This article presents a strategy for improved detection of the neuropathology, based on electroencephalogram (EEG), using a classifier built with support vector machines (SVC). The SVC is designed based on feature extraction of higher order spectra of time series derived from the EEG applied to epileptic patients and control patients. As demonstrated in the study presented, the EEG time series are highly nonlinear and non-Gaussian, therefore, exhibit higher order spectra, which are extracted features that improve the accuracy in the performance of SVC. The results of this study suggest the development of highly accurate computational tools for the diagnosis of this dreaded neuropathology.展开更多
Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related gen...Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related generalized convexities are given. In this paper, we give the convexity of (F, α ,p ,d ,b , φ )β vector-pseudo- quasi-Type I and formulate a higher-order duality for minimax fractional type programming involving symmetric matrices, and give the weak, strong and strict converse duality theorems under the condition of higher-order (F, α ,p ,d ,b , φ )β vector-pseudoquasi-Type I.展开更多
There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions...There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.展开更多
文摘In this paper, a classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of the received signals are used as classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against rest of multi-class classifier is designed, and method of parameter selection using cross- validation grid is adopted. Through the experiments it can be concluded that the classifier based on SVM has high performance and is more robust.
基金Supported by the National Natural Science Foundation of China(Grant No.11401262)
文摘In the paper [Monotone countable paracompactness and maps to ordered topological vector spaces, Top. Appl., 2014, 169(3): 51–70], Yamazaki initiated the study on maps with values into ordered topological vector spaces. Characterizations of monotonically countably paracompact spaces and some other spaces in terms of maps to ordered topological vector spaces were obtained. In this paper, following Yamazaki's method, we present some characterizations of stratifiable spaces and k-semi-stratifiable spaces in terms of maps with values into ordered topological vector spaces.
文摘A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the second order vector potential (SOVP) formalism which introduces two scalar potentials in order to obtain analytical expressions of the electromagnetic fields from the two potentials. However, the scalar decomposition is often known for canonical coordinate systems. This paper aims in introducing a specific SOVP formulation dedicated to arbitrary non-orthogonal curvilinear coordinates systems. The electromagnetic field representation which is derived in this paper constitutes the key stone for the development of semi-analytical models for solving some eddy currents moelling problems and electromagnetic radiation problems considering at least two homogeneous media separated by a rough interface. This SOVP formulation is derived from the tensor formalism and Maxwell’s equations written in a non-orthogonal coordinates system adapted to a surface characterized by a 2D arbitrary aperiodic profile.
基金National Natural Science Foundation of China(Nos.1167125811371086)
文摘The stationary probability vectors of a second order Markov chain on the(n-1)-dimensional standard simplex are considered.In 2015,Li and Zhang gave a characterization of the second order Markov chain such that every vector in the simplex is a stationary vector.A modification of the characterization is presented in the paper.Some sufficient conditions are derived for any facet of the simplex such that every vector of the facet is a stationary vector.
文摘In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)-convex functions are introduced and sufficient optimality results are proved involving these classes. Also, a unified dual is associated with the considered primal problem, and weak and strong duality results are established.
文摘Mathematical morphology can process the binary and grayscale image successfully. This theory cannot be extended to the color image directly. In color space, a vector represents a pixel, so in order to compare vectors, vectoriel orderings must be defined first. This paper addresses the question of the extension of morphological operator to the case of color images. The proposed method used the order by bit mixing to replace the conditional order. Our order is based on a combination of reduced and bit mixing ordering of the underlying data. Additionally it is a total ordering. Since it not only solves the problems of false color generated by the marginal order but also those of multiple extrema generated by reduced order. The performance of the introduced operators is illustrated by means of different applications: color gradients for segmenting, image smoothing (noise suppression) by median filter operator and Laplacian operators. Examples of natural color images and synthetic color images are given. Experimental results show the improvement brought by this new method.
基金supported by the Natural Science Foundation Project of CQ CSTC (No. 2010BB7421)
文摘The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.
基金This Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20122304120011)the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.HEUCFR1119)
文摘Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the sottware tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
文摘We consider the five-point boundary value problem for a fifth-order differential equation, where the nonlinearity is superlinear at both the origin and +infinity. Our method of proof combines the Kneser’s theorem with the well-known from combinatorial topology Sperner’s lemma. We also notice that our geometric approach is strongly based on the associated vector field.
文摘Epilepsy is the most common neuropathology. Statistical studies related to the disease reported that 20% - 25% of epileptic patients with occurrence of seizures were even under treatment with drugs. This article presents a strategy for improved detection of the neuropathology, based on electroencephalogram (EEG), using a classifier built with support vector machines (SVC). The SVC is designed based on feature extraction of higher order spectra of time series derived from the EEG applied to epileptic patients and control patients. As demonstrated in the study presented, the EEG time series are highly nonlinear and non-Gaussian, therefore, exhibit higher order spectra, which are extracted features that improve the accuracy in the performance of SVC. The results of this study suggest the development of highly accurate computational tools for the diagnosis of this dreaded neuropathology.
文摘Convexity and generalized convexity play important roles in optimization theory. With the development of programming problem, there has been a growing interest in the higher-order dual problem and a lot of related generalized convexities are given. In this paper, we give the convexity of (F, α ,p ,d ,b , φ )β vector-pseudo- quasi-Type I and formulate a higher-order duality for minimax fractional type programming involving symmetric matrices, and give the weak, strong and strict converse duality theorems under the condition of higher-order (F, α ,p ,d ,b , φ )β vector-pseudoquasi-Type I.
基金Supported by the National Natural Science Foundation of China(11361001)Natural Science Foundation of Ningxia(NZ14101)
文摘There are two approaches of defining the solutions of a set-valued optimization problem: vector criterion and set criterion. This note is devoted to higher-order optimality conditions using both criteria of solutions for a constrained set-valued optimization problem in terms of higher-order radial derivatives. In the case of vector criterion, some optimality conditions are derived for isolated (weak) minimizers. With set criterion, necessary and sufficient optimality conditions are established for minimal solutions relative to lower set-order relation.