期刊文献+
共找到705篇文章
< 1 2 36 >
每页显示 20 50 100
Variogram modelling optimisation using genetic algorithm and machine learning linear regression:application for Sequential Gaussian Simulations mapping
1
作者 André William Boroh Alpha Baster Kenfack Fokem +2 位作者 Martin Luther Mfenjou Firmin Dimitry Hamat Fritz Mbounja Besseme 《Artificial Intelligence in Geosciences》 2025年第1期177-190,共14页
The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of... The objective of this study is to develop an advanced approach to variogram modelling by integrating genetic algorithms(GA)with machine learning-based linear regression,aiming to improve the accuracy and efficiency of geostatistical analysis,particularly in mineral exploration.The study combines GA and machine learning to optimise variogram parameters,including range,sill,and nugget,by minimising the root mean square error(RMSE)and maximising the coefficient of determination(R^(2)).The experimental variograms were computed and modelled using theoretical models,followed by optimisation via evolutionary algorithms.The method was applied to gravity data from the Ngoura-Batouri-Kette mining district in Eastern Cameroon,covering 141 data points.Sequential Gaussian Simulations(SGS)were employed for predictive mapping to validate simulated results against true values.Key findings show variograms with ranges between 24.71 km and 49.77 km,opti-mised RMSE and R^(2) values of 11.21 mGal^(2) and 0.969,respectively,after 42 generations of GA optimisation.Predictive mapping using SGS demonstrated that simulated values closely matched true values,with the simu-lated mean at 21.75 mGal compared to the true mean of 25.16 mGal,and variances of 465.70 mGal^(2) and 555.28 mGal^(2),respectively.The results confirmed spatial variability and anisotropies in the N170-N210 directions,consistent with prior studies.This work presents a novel integration of GA and machine learning for variogram modelling,offering an automated,efficient approach to parameter estimation.The methodology significantly enhances predictive geostatistical models,contributing to the advancement of mineral exploration and improving the precision and speed of decision-making in the petroleum and mining industries. 展开更多
关键词 variogram modelling Genetic algorithm(GA) Machine learning Gravity data Mineral exploration
在线阅读 下载PDF
A flexible lag definition for experimental variogram calculation 被引量:3
2
作者 Cuba Miguel 《Mining Science and Technology》 EI CAS 2011年第2期207-211,共5页
Inferring the experimental variogram used in geostatistics commonly relies on the method-of-moments approach.Ideally,the available data-set used for calculating the experimental variogram should be drawn from a regula... Inferring the experimental variogram used in geostatistics commonly relies on the method-of-moments approach.Ideally,the available data-set used for calculating the experimental variogram should be drawn from a regular pattern.However,in practice the available data-set is typically sampled over a sparse pattern at irregularly spaced locations.Hence,some binning of the variogram cloud is required to obtain fair estimates of the experimental variogram.Grouping of the variogram data pairs as a result of conventional binning depends on parameters such as the main anisotropic directions and a regular definition of the lag vectors.These parameters are not based on the configuration of the variogram data pairs in the variogram cloud but on a segment of it that is arbitrarily predefined.Therefore,the conventional experimental variogram estimation approach is biased because of the strict configuration of the bins over the variogram cloud.In this paper,a new method of estimating experimental variograms is proposed.Lag vectors and their tolerances are decided in the proposed method from information in the variogram cloud:they are not influenced by any predefined directions.The proposed methodology is a well-founded,practicable and easy-to-automate approach for experimental variogram calculation using an irregularly sampled data-set.Comparison of results from the new method to those from the traditional approach is very encouraging. 展开更多
关键词 GEOSTATISTICS variogram cloud Experimental variogram variogram modeling Self-organizing-map
在线阅读 下载PDF
VARIOGRAM无偏估计类探讨
3
作者 陈励 《云南师范大学学报(自然科学版)》 2000年第6期1-5,共5页
Variogram是空间数据分析中的一个重要参数。本文给出了 VARIOGRAM的一个无偏估计类。用之和传统估计作比较 。
关键词 variogram 无偏估计类 方差 数理统计
在线阅读 下载PDF
Characterizing Landscape Spatial Heterogeneity in Multisensor Images with Variogram Models
4
作者 QIU Bingwen ZENG Canying +3 位作者 CHENG Chongcheng TANG Zhenghong GAO Jianyang SUI Yinpo 《Chinese Geographical Science》 SCIE CSCD 2014年第3期317-327,共11页
Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has ... Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has been filled through quantifying and evaluating spatial heterogeneity of urban and natural landscapes from QuickBird, Satellite pour l'observation de la Terre (SPOT), Ad- vanced Spacebome Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) images with variogram analysis. Instead of a logarithmic relationship with pixel size observed in the corresponding aggregated images, the spatial variability decayed and the spatial structures decomposed more slowly and complexly with spatial resolution for real multisensor im- ages. As the spatial resolution increased, the proportion of spatial variability of the smaller spatial structure decreased quickly and only a larger spatial structure was observed at very coarse scales. Compared with visible band, greater spatial variability was observed in near infrared band for both densely and less densely vegetated landscapes. The influence of image size on spatial heterogeneity was highly dependent on whether the empirical sernivariogram reached its sill within the original image size. When the empirical semivariogram did not reach its sill at the original observation scale, spatial variability and mean characteristic length scale would increase with image size; otherwise they might decrease. This study could provide new insights into the knowledge of spatial heterogeneity in real multisen- sor images with consideration of their nominal spatial resolution, image size and spectral bands. 展开更多
关键词 variogram modeling spatial heterogeneity characteristic scale multisensor image
在线阅读 下载PDF
A Method to Integrate Geological Knowledge in Variogram Modeling of Facies: A Case Study of a Fluvial Deltaic Reservoir
5
作者 Margaret Akoth Oloo Congjiao Xie 《International Journal of Geosciences》 2018年第6期337-353,共17页
Variograms are important tools in the spatial distribution of facies and petrophysical properties. Due to the scarcity of subsurface well data, both spatially and quantity wise, variograms representing the data tend t... Variograms are important tools in the spatial distribution of facies and petrophysical properties. Due to the scarcity of subsurface well data, both spatially and quantity wise, variograms representing the data tend to have a lot of uncertainties. In order to reduce uncertainty in variograms, well data can be supplemented with the geological knowledge of the reservoir. This has been demonstrated by various authors in previous works. In their paper “Methodology to Incorporate Geological Knowledge in Variogram Modeling,” A. Bahar and M. Kelkar introduced a methodology to incorporate geological knowledge by studying the energy level of the depositional environment and grain texture. They used these two attributes to determine the relative distance of continuity of the lithofacies and incorporated it in the variogram modeling. In this paper, we introduce another attribute that determines the continuity of lithofacies;the accommodation or deposition space. For illustration purpose, two sets of facies models were constructed: The first using subsurface well data only and the second using well data and geological information of the reservoir. The two sets of models showed significant variation in the property distribution. The first set gave a more random appearance of the facies distribution while the second set gave a more realistic depiction of the depositional environment of the reservoir. We concluded that other than the grain size and the energy level of the depositional environment, another important determinant for continuity in variograms is the knowledge of the depositional space. Incorporating the knowledge of the depositional environment enabled a more accurate estimation of the variogram parameters. This resulted in an improvement in the accuracy of the model. 展开更多
关键词 Geological Knowledge DEPOSITIONAL Environment Energy Level variogram
暂未订购
ENHANCING GROUND RESOLUTION OF TM6 BASED ON MULTI-VARIATE REGRESSION MODEL AND SEMI-VARIOGRAM FUNCTION
6
作者 MA Hongchao LI Deren 《Geo-Spatial Information Science》 2001年第1期43-49,共7页
It is well known that Landsat TM images are the most widely used remote sensing data in various fields.Usually,it has 7 different electromagnetic spectrum bands,among which the sixth one has much lower ground resoluti... It is well known that Landsat TM images are the most widely used remote sensing data in various fields.Usually,it has 7 different electromagnetic spectrum bands,among which the sixth one has much lower ground resolution compared with the other six bands.Nevertheless,it is useful in the study of rock spectrum reflection,geothermal resources exploration,etc.To improve the ground resolution of TM6 to the level as that of the other six bands is a problem .This paper presents an algorithm based on the combination of multivariate regression model with semivariogram function which can improve the ground resolution of TM6 by "fusing" the data of other six bands.It includes the following main steps: (1) testing the correlation between TM6 and one of TM15,7.If the correlation coefficient between TM6 and another one is greater than a given threshold value,then select the band to the regression analysis as an argument.(2) calculating the size of the template window within which some parameters needed by the regression model will be calculated; (3) replacing the original pixel values of TM6 by those obtained by regression analysis; (4) using image entropy as a measurement to evaluate the quality of the fused image of TM6.The basic mechanism of the algorithm is discussed and the V C ++ program for implementing this algorithm is also presented.A simple application example is given in the last part of this paper,showing the effectiveness of the algorithm. 展开更多
关键词 multi-variate regression model semi-variogram FUNCTION image fusion TEMPLATE WINDOW V C++ PROGRAMMING
在线阅读 下载PDF
Variogram Analyses of Soil Characters in Glacial Moraine Landscapes
7
作者 Adzemi Mat Arshad Mustika Edi Armanto +1 位作者 Juergen Lamp Elisa Wildayana 《Journal of Environmental Science and Engineering(A)》 2012年第12期1308-1316,共9页
The objective of this research is to analyze variogram analyses of soil characters in Glacial Moraine Landscapes. The research site is located in sloping landscapes, Kuehren, North Germany. The survey method was detai... The objective of this research is to analyze variogram analyses of soil characters in Glacial Moraine Landscapes. The research site is located in sloping landscapes, Kuehren, North Germany. The survey method was detailed using maps with scales of 1:5,000. Soil sampling was performed by soil pits and borings and completely analyzed in laboratory. Collected data were evaluated by geostatistics program for spatial soil variability analyses. The variogram models show that spatial soil variability ranges between 70-120 m (mean: 85 m). Effective distances of sampling are calculated at around 50 m. The range values of soil characters are proportional with the range of elevation (range: 70 m, effective distance: 40 m). The relief determines mainly the spatial variability of soil characters. 展开更多
关键词 variogram analyses soil characters glacial moraine landscapes
在线阅读 下载PDF
Imaging Analysis of Trabecular Bone Texture Based on the Initial Slope of Variogram of Ultra-Distal Radius Digital X-Ray Imaging: Effects on Bone Mineral Density and Age
8
作者 Jianfeng Chen Qifeng Ying 《Open Journal of Radiology》 2022年第3期78-85,共8页
Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data f... Background: When applied to trabecular bone X-ray images, a method for analyzing trabecular bone texture based on the initial slope of variogram (ISV) was used to assess the trabecular bone health. Methodology: Data from more than two hundred subjects were retrospectively studied. For each subject, a DXA (GE Lunar Prodigy) scan of the forearm was performed, and bone mineral density (BMD) value was measured at the location of ultra-distal radius, X-ray digital image of the same forearm was taken on the same day, and ISV value over the same location of ultra-distal radius was calculated. Pearson’s correlation coefficients were calculated to examine the correlation between BMD and ISV of the trabecular bones located at the same ultra-distal radius. ISV values changed with subjects’ age were also reported. Results: The results show that ISV value was highly correlated with the DXA-measured BMD of the same trabecular bone located at the ultra-distal radius. The correlation coefficient between ISV and BMD with the 95% confident was 0.79 ± 0.09. They also demonstrated that the age-related changes in trabecular bone health and differentiated age patterns in males and females, respectively. The results showed that the decrease in BMD was accompanied by a decrease in the initial slope of variogram (ISV). Conclusions: This study suggests that ISV might be used to quantitatively evaluate trabecular health for osteoporosis and bone disease diagnosis. 展开更多
关键词 Trabecular Bone Texture Digital X-Ray Image Bone Mineral Density Ultra-Distal Radius Initial Slope of variogram
暂未订购
Applications of variogram modeling to electrical resistivity data for the occurrence and distribution of saline groundwater in Domail Plain,northwestern Himalayan fold and thrust belt,Pakistan
9
作者 Asam FARID Perviez KHALID +2 位作者 Khan Zaib JADOON Muhammad Asim IQBAL Muhammad SHAFIQUE 《Journal of Mountain Science》 SCIE CSCD 2017年第1期158-174,共17页
This paper studies electrical resistivity dataset acquired for a groundwater study in the Domail Plain in the northwestern Himalayan section of Pakistan. Through a combination of geostatistical analysis,geophysical in... This paper studies electrical resistivity dataset acquired for a groundwater study in the Domail Plain in the northwestern Himalayan section of Pakistan. Through a combination of geostatistical analysis,geophysical inversion and visualization techniques,it is possible to re-model and visualize the single dimension resistivity data into 2D and 3D space.The variogram models are utilized to extend the interpretation of the data and to distinguish individual lithologic units and the occurrence of saline water within the subsurface. The resistivity data has been calibrated with the lithological logs taken from the available boreholes. As such the alluvial system of the Domail Plain has formed during episodes of local tectonic activity with fluvial erosion and depositionyielding coarse sediments with high electrical resistivities near to the mountain ranges and finer sediments with medium to low electrical resistivities which tend to settle in the basin center. Thus a change is depositional setting happened from basin lacustrine environment to flash flooding during the Himalayan orogeny. The occurrence of rock salt in the northern mountains has imparted a great influence on the groundwater quality of the study area. The salt is dissolved by water which infiltrates into the subsurface through the water channels. Variogram aided gridding of resistivity data helps to identify the occurrence and distribution of saline water in the subsurface. 展开更多
关键词 Inversion Domail Resistivity variogram Gridding
原文传递
A Yield Mapping Procedure Based on Robust Fitting Paraboloid Cones on Moving Elliptical Neighborhoods and the Determination of Their Size Using a Robust Variogram
10
作者 Martin Bachmaier 《Positioning》 2010年第1期27-41,共15页
The yield map is generated by fitting the yield surface shape of yield monitor data mainly using paraboloid cones on floating neighborhoods. Each yield map value is determined by the fit of such a cone on an elliptica... The yield map is generated by fitting the yield surface shape of yield monitor data mainly using paraboloid cones on floating neighborhoods. Each yield map value is determined by the fit of such a cone on an elliptical neighborhood that is wider across the harvest tracks than it is along them. The coefficients of regression for modeling the paraboloid cones and the scale parameter are estimated using robust weighted M-estimators where the weights decrease quadratically from 1 in the middle to zero at the border of the selected neighborhood. The robust way of estimating the model parameters supersedes a procedure for detecting outliers. For a given neighborhood shape, this yield mapping method is implemented by the Fortran program paraboloidmapping.exe, which can be downloaded from the web. The size of the selected neighborhood is considered appropriate if the variance of the yield map values equals the variance of the true yields, which is the difference between the variance of the raw yield data and the error variance of the yield monitor. It is estimated using a robust variogram on data that have not had the trend removed. 展开更多
关键词 Precision Agriculture Yield Mapping GPS Elliptical Neighborhood PARABOLOID Weighted Regression Redescending M-estimate Robust variogram
在线阅读 下载PDF
考虑风速空间异质性的LSTM-AM雾天能见度预测模型
11
作者 王小建 林智婕 +4 位作者 马飞 苏彤 白元旦 郭庆元 黄凯 《气候与环境研究》 北大核心 2025年第4期439-449,共11页
针对现有方法在雾天能见度预测时对风速空间异质性考虑不足导致预测准确性和稳定性不高的问题,构建了考虑风速空间异质性的长短期记忆神经网络—注意力机制(LSTM-AM)雾天能见度预测模型。利用半变异函数对风速不同空间位置的变化特征进... 针对现有方法在雾天能见度预测时对风速空间异质性考虑不足导致预测准确性和稳定性不高的问题,构建了考虑风速空间异质性的长短期记忆神经网络—注意力机制(LSTM-AM)雾天能见度预测模型。利用半变异函数对风速不同空间位置的变化特征进行量化,融合邻近点空间分布及风速差异信息,采用风向夹角和变异值对风速空间异质性特征进行加权,实现对风速空间异质性的有效提取;利用AM机制能加强对关键信息关注的优势对LSTM方法进行改进,以有效捕捉和反映关键时刻气象因子对雾天能见度的影响,增强模型对重要时序信息关注的能力和模型预测的准确性,实现风速空间异质性下对雾天能见度的预测。研究结果表明,本文模型相关系数提升10%~20%,均方根误差下降25%~40%,平均绝对误差下降26.3%~39.1%,具有较高的雾天能见度预测精度。 展开更多
关键词 空间异质性 半变异函数 长短期记忆神经网络 注意力机制 雾天能见度
在线阅读 下载PDF
CNN-GRU模型在克里金插值中的应用 被引量:3
12
作者 郭天良 宋强功 +1 位作者 郭淑文 许辉群 《石油地球物理勘探》 北大核心 2025年第1期185-192,共8页
克里金插值是一种可以结合经验知识的建模方法,其中变差函数的求取精度决定了插值的效果,从而影响基于克里金插值的地震反演低频模型的构建。传统的克里金插值方法难以同时使用多个不同的变差函数理论模型来提高低频模型构建的精度,而... 克里金插值是一种可以结合经验知识的建模方法,其中变差函数的求取精度决定了插值的效果,从而影响基于克里金插值的地震反演低频模型的构建。传统的克里金插值方法难以同时使用多个不同的变差函数理论模型来提高低频模型构建的精度,而仅仅利用单一的理论模型实现变差函数求解,存在理论模型选择的不确定性、变差函数拟合值偏低的平滑效应以及井距较远产生的空洞效应。为此,引入神经网络CNN-GRU模型,能够自适应拟合向量到对应井之间半方差的复杂关系,进一步实现球状模型、高斯模型、指数模型和空洞效应模型的有效融合,从而解决变差函数的不确定性、平滑效应和空洞效应。该模型考虑了井间的相关性,可便捷地实现逐点的变差分析,处理过程方便,可较好匹配变差函数选取参数的随机性。实际资料应用表明,基于CNN-GRU模型的克里金法可建立一个高精度的低频地震反演模型,其效果相较于传统方法更优。 展开更多
关键词 CNN-GRU 变差函数 克里金 低频模型
在线阅读 下载PDF
大兴安岭不同演替阶段天然林不对称性竞争 被引量:1
13
作者 肖云友 董灵波 《生态学杂志》 北大核心 2025年第4期1085-1096,共12页
不对称性竞争在种群空间分布、群落结构转变和森林演替的稳定性中起着关键的作用。本研究以大兴安岭地区3个不同演替阶段(即白桦林、白桦-兴安落叶松混交林和兴安落叶松林)的1 hm^(2)固定样地调查数据为基础,采用单、双变量成对相关函数... 不对称性竞争在种群空间分布、群落结构转变和森林演替的稳定性中起着关键的作用。本研究以大兴安岭地区3个不同演替阶段(即白桦林、白桦-兴安落叶松混交林和兴安落叶松林)的1 hm^(2)固定样地调查数据为基础,采用单、双变量成对相关函数g(r)和单、双变量标记变异函数γ(r)量化各演替阶段中不同树种(白桦和兴安落叶松)和不同等级(幼树、中树和大树)林木的空间分布格局及竞争不对称性。结果表明:优势树种在多尺度下表现显著的聚集分布,种内主要呈现明显的对称性竞争,显著的不对称性竞争仅在白桦林的0~1 m尺度上发现;混交林中白桦与兴安落叶松在2~3 m尺度存在显著的种间对称性竞争,且在0~3 m尺度显示空间负相关。随着林木等级的增加,各演替阶段的林木空间分布格局均呈现由幼树聚集分布向大树随机分布转变的规律。白桦林中,同等级和不同等级个体以对称性竞争为主,而不对称性竞争仅存在中树与大树之间的10~12 m尺度上,等级间空间关联性以负相关和不相关为主。白桦-兴安落叶松混交林中,同等级个体仅有幼树在10和20 m尺度附近存在显著不对称性竞争,大树对中树和幼树均存在明显对称性竞争,等级间空间关联性以正相关为主。兴安落叶松林中,同等级和不同等级个体主要为对称性竞争,显著不对称性竞争存在于幼树与大树之间的多尺度上,等级间空间关联性主要为不相关。同种和同等级对称性竞争是不同演替阶段天然林群落林木空间分布格局的重要影响因素。 展开更多
关键词 大兴安岭 对称性竞争 不对称性竞争 标记变异函数 天然林
原文传递
非一致性极值降雨空间聚类和频率及对气候因子响应研究
14
作者 曾杭 周洋 +2 位作者 李建柱 杨琦 黄佳期 《水力发电学报》 北大核心 2025年第6期72-88,共17页
随着全球气候变化影响,极值降雨序列的空间聚类演变和气候响应特征对流域暴雨风险估计有非常重要的意义。本文以湘江流域为研究区域,采用基于变差函数F-madogram的围绕中心点划分(PAM)聚类算法将流域极值降雨序列分为3个聚类分区;筛选... 随着全球气候变化影响,极值降雨序列的空间聚类演变和气候响应特征对流域暴雨风险估计有非常重要的意义。本文以湘江流域为研究区域,采用基于变差函数F-madogram的围绕中心点划分(PAM)聚类算法将流域极值降雨序列分为3个聚类分区;筛选出与各聚类分区大部分站点相关性显著的气候驱动因子,以各聚类中心站点为代表,构建基于贝叶斯的非一致性极值降雨频率计算模型。结果表明:极值聚类算法相较K均值聚类法更适用于极值降雨序列;以气候因子为协变量的时变矩模型表现最优,且其不确定性区间最小;当前一年北大西洋涛动为负相、同年西太平洋海面气压升高和东太平洋海面温度上升时,湘江流域上中下游夏季极值降雨频率增加,为湘江流域极值暴雨风险估计和预测提供科学依据。 展开更多
关键词 极值空间聚类 变差函数 围绕中心点划分聚类算法 气候驱动 非一致性极值降雨 湘江流域
在线阅读 下载PDF
地质统计学变异函数贝叶斯模型选择方法与比较
15
作者 张一凡 张璐璐 徐加宝 《地质科技通报》 北大核心 2025年第2期38-47,共10页
变异函数量化了空间2点地质属性的变异性,对地质统计分析至关重要。当地质数据随空间坐标呈现趋势变化时,正确选择和估计变异函数十分困难。为实现变异函数的模型选择和参数估计,提出了基于贝叶斯理论的变异函数选择方法,采用拉普拉斯... 变异函数量化了空间2点地质属性的变异性,对地质统计分析至关重要。当地质数据随空间坐标呈现趋势变化时,正确选择和估计变异函数十分困难。为实现变异函数的模型选择和参数估计,提出了基于贝叶斯理论的变异函数选择方法,采用拉普拉斯近似方法将后验概率分布近似为高斯分布。首先计算出参数的后验概率分布,随后分别计算每个备选变异函数的贝叶斯模型证据,以确定最优模型。探讨了3种模型选择方法在变异函数选择中的适用性,包括贝叶斯模型证据(BME)、Akaike information criterion(AIC)识别准则和Bayesian information criterion(BIC)识别准则。通过实测静力触探试验的锥端阻力数据,说明了该方法,并从模型拟合度和复杂度罚值2个方面比较3种方法在变异函数模型选择中的差异性。研究表明,给定试验数据条件下,BME能够合理地考虑变异函数的拟合度和复杂性;而AIC和BIC识别准则在模型参数个数相同时,仅能反映不同变异函数的拟合度差异,因此,在这种情况下推荐采用BME选择变异函数。本研究方法能够在考虑趋势项参数条件下合理地选择地质统计学变异函数,所选最优变异函数与试验变异函数较一致,为地质统计学分析提供了有效的参考。 展开更多
关键词 静力触探试验 贝叶斯理论 拉普拉斯近似 变异函数 模型选择 BME 地质统计学
在线阅读 下载PDF
基于统计学的地面沉降监测网优化设计
16
作者 刘刚 彭轶群 +2 位作者 徐昊 裴江涛 骆祖江 《吉林大学学报(地球科学版)》 北大核心 2025年第4期1240-1255,共16页
地面沉降是一种缓慢发生且不可逆转的地质灾害,是城市化进程中普遍存在的环境地质问题。为了解决现有地面沉降监测网获取的沉降信息不完整、对城市地面沉降的监控不够精准等问题,需要对其进行优化。本文以南京市长江漫滩地面沉降监测网... 地面沉降是一种缓慢发生且不可逆转的地质灾害,是城市化进程中普遍存在的环境地质问题。为了解决现有地面沉降监测网获取的沉降信息不完整、对城市地面沉降的监控不够精准等问题,需要对其进行优化。本文以南京市长江漫滩地面沉降监测网为例,利用地质统计学的区域化变量理论和变异函数理论,运用Kriging插值法对研究区地面沉降监测网分别建立变异函数模型,研究南京市长江漫滩区域各监测网标准差分布特征,并对其进行优化布设。结果表明:南京市长江漫滩区域地面沉降监测网存在分布不合理问题。进行优化布设后,淘汰冗余及边缘监测井34个,新增监测井16个;淘汰冗余及边缘水准点49个,新增水准点21个;分层沉降监测网缩减18组,新增13组。改进后的监测井网在满足精度要求的同时,能够最大程度地获取监测数据,实现了沉降监测网络的优化布置。 展开更多
关键词 地面沉降监测网 地质统计学理论 KRIGING插值 优化设计 地质灾害 变异函数模型
在线阅读 下载PDF
Down-scaling LUCC based on the histo-variogram 被引量:3
17
作者 ZHANG Hao CAO ChunXiang +3 位作者 LI GuoPing YANG Hua LI XiaoWen QIN Jun 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第5期1348-1353,共6页
In remote sensing applications,accurate extraction of land type area after classification is very impor-tant.But for images of land use/cover change(LUCC) obtained from the special spatial resolution re-mote sensing d... In remote sensing applications,accurate extraction of land type area after classification is very impor-tant.But for images of land use/cover change(LUCC) obtained from the special spatial resolution re-mote sensing data,it will be of great significance to obtain the land type area information with higher resolution by making use of spatial distribution characteristcs information of the land type itself first and further scaling-down in a given scale threshold on the basis of the existing spatial resolution data.An explicit expression of the relationship between the measurement scale,global fractal dimension and the land type area corresponding to different measurement scales is obtained on the research basis of the authors' histo-variogram using the standardized area index(SAI).A good attempt has been made to obtain the land type area information with higher resolution by merely using the spatial distribution characteristcs information of the land type in the image itself and further scaling-down in a given scale threshold on the basis of the existing spatial resolution data. 展开更多
关键词 histo-variogram scaling-down scale effect LUCC
原文传递
Analysis of variograms with various sample sizes from a multispectral image 被引量:1
18
作者 Huihui Zhang Yubin Lan +4 位作者 Ronald E.Lacey Yanbo Huang W.Clint Hoffmann D.Martin G.C.Bora 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2009年第4期62-69,共8页
Variogram plays a crucial role in remote sensing application and geostatistics.It is very important to estimate variogram reliably from sufficient data.In this study,the analysis of variograms computed on various samp... Variogram plays a crucial role in remote sensing application and geostatistics.It is very important to estimate variogram reliably from sufficient data.In this study,the analysis of variograms computed on various sample sizes of remotely sensed data was conducted.A 100×100-pixel subset was chosen randomly from an aerial multispectral image which contains three wavebands,Green,Red and near-infrared(NIR).Green,Red,NIR and Normalized Difference Vegetation Index(NDVI)datasets were imported into R software for spatial analysis.Variograms of these four full image datasets and sub-samples with simple random sampling method were investigated.In this case,half size of the subset image data was enough to reliably estimate the variograms for NIR and Red wavebands.To map the variation on NDVI within the weed field,ground sampling interval should be smaller than 12 m.The information will be particularly important for Kriging and also give a good guide of field sampling on the weed field in the future study. 展开更多
关键词 variogram multispectral image GEOSTATISTICS
原文传递
基于ICESat–2/ATLAS与地统计学的森林生物量空间异质性分析
19
作者 余金格 罗绍龙 +5 位作者 钱常明 舒清态 王书伟 胥丽 席磊 宋涵玥 《西南林业大学学报(自然科学)》 北大核心 2025年第1期146-155,共10页
以ICESat–2/ATLAS数据为数据源,结合54块实测样地,构建机器学习模型并对光斑足迹的地上生物量进行预测,采用Moran's I和半变异函数对反演的森林AGB空间自相关和异质性进行研究。结果表明:梯度提升回归树(GBRT)模型具有较好的预测精... 以ICESat–2/ATLAS数据为数据源,结合54块实测样地,构建机器学习模型并对光斑足迹的地上生物量进行预测,采用Moran's I和半变异函数对反演的森林AGB空间自相关和异质性进行研究。结果表明:梯度提升回归树(GBRT)模型具有较好的预测精度(R^(2)=0.90,RMSE=11.08 t/hm^(2));香格里拉市森林生物量的最佳拟合半变异函数模型为指数模型(C_(0)=0.12,C_(0)+C=0.87,A_(0)=10 200 m);与普通克里格相比,序贯高斯条件模拟得到的AGB空间分布图具有较好的一致性(r=0.59^(**),d=0.70)。AGB的空间分异能够被地形因子解释,在解释力方面,海拔最大,坡向次之,坡度最小;基于星载激光雷达ICESat–2/ATLAS数据的森林AGB反演精度较高(P_(p)=81.43%),为地统计分析提供了可靠的数据源。因此,基于星载激光雷达与地统计学相结合的方法,能较好地实现森林AGB的空间异质性分析。 展开更多
关键词 地上生物量 空间异质性 机器学习 半变异函数 ICESat–2 地理探测器
在线阅读 下载PDF
基于变异函数的三维矿体结构分析与应用以新疆昭苏卡拉盖雷铜多金属矿为例
20
作者 陈向平 牛英杰 +5 位作者 张龙升 冯宝山 席丹 蒋吉胜 王艳辉 王居松 《吉林地质》 2025年第1期31-37,共7页
本文以新疆昭苏卡拉盖雷铜多金属矿为研究对象,结合区域地质背景与矿床地质特征,应用地质统计学中的变异函数理论,对矿体三维结构特征进行定量分析。通过实验变异函数与理论变异函数的拟合,揭示了矿体在不同方向上的空间相关性,主轴方... 本文以新疆昭苏卡拉盖雷铜多金属矿为研究对象,结合区域地质背景与矿床地质特征,应用地质统计学中的变异函数理论,对矿体三维结构特征进行定量分析。通过实验变异函数与理论变异函数的拟合,揭示了矿体在不同方向上的空间相关性,主轴方向连续性显著,短轴方向相关性较弱。基于三维模型的资源量评估结果显示,该矿床具有显著的资源潜力。研究进一步提出了针对性的勘查优化策略,为矿床资源评估及勘查开发提供了科学依据,并拓展了变异函数理论在矿床分析中的应用。 展开更多
关键词 变异函数 三维矿体模型 空间结构分析 资源量评估 勘查优化 新疆卡拉盖雷铜矿
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部