Infrasound,known for its strong penetration and low attenuation,is extensively used in monitoring and warning systems for debris flows.Here,a debris-flow forecasting method was proposed by combining infrasound-based v...Infrasound,known for its strong penetration and low attenuation,is extensively used in monitoring and warning systems for debris flows.Here,a debris-flow forecasting method was proposed by combining infrasound-based variational mode decomposition and Autoregressive Integrated Moving Average(ARIMA)model.High-precision infrasound sensor was utilized in experiments to record signals under twelve varying conditions of debris flow volume and velocity.Variational mode decomposition was performed on the detected raw signals,and the optimal decomposition scale and penalty factor were obtained through the sparrow search algorithm.The Hilbert transform,rescaled range analysis,power spectrum analysis,and Pearson correlation coefficients judgment criteria were employed to separate and reconstruct the signals.Based on the reconstructed infrasound signals,an ARIMA model was constructed to forecast the trend of debris flow infrasound signal.Results reveal that the Hilbert transform effectively separated noise,and the predictive model’s results fell within a 95%confidence interval.The Mean Absolute Percentage Error(MAPE)across four experiments were 4.87%,5.23%,5.32%and 4.47%,respectively,showing a satisfactory accuracy and providing an alternative for predicting debris flow by infrasound signals.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decompositi...In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance.展开更多
Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the ef...Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the effective microseismic signal from polluted noisy signals,a novel microseismic signal denoising method that combines the variational mode decomposition(VMD)and permutation entropy(PE),which we denote as VMD–PE,is proposed in this paper.VMD is a recently introduced technique for adaptive signal decomposition,where K is an important decomposing parameter that determines the number of modes.VMD provides a predictable eff ect on the nature of detected modes.In this work,we present a method that addresses the problem of selecting an appropriate K value by constructing a simulation signal whose spectrum is similar to that of a mine microseismic signal and apply this value to the VMD–PE method.In addition,PE is developed to identify the relevant effective microseismic signal modes,which are reconstructed to realize signal filtering.The experimental results show that the VMD–PE method remarkably outperforms the empirical mode decomposition(EMD)–VMD filtering and detrended fl uctuation analysis(DFA)–VMD denoising methods of the simulated and real microseismic signals.We expect that this novel method can inspire and help evaluate new ideas in this field.展开更多
In the pump-controlled motor hydraulic transmission system,when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other,the hydraulic system will generate a strong pre...In the pump-controlled motor hydraulic transmission system,when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other,the hydraulic system will generate a strong pressure beat vibration phenomenon,which will seriously affect the smooth running of the hydraulic system.However,the modulated pressure signal also carries information related to the operating state of the hydraulic system,and a accurate extraction of pressure vibration characteristics is the key to obtain the operating state information of the hydraulic system.In order to extract the pressure beat vibration signal component effectively from the multi-component time-varying aliasing pressure signal and reconstruct the time domain characteristics,an extraction method of the pressure beat vibration characteristics of the hydraulic transmission system based on variational mode decomposition(VMD)is proposed.The experimental results show that the VMD method can accurately extract the pressure beat vibration characteristics from the high-pressure oil pressure signal of the hydraulic system,and the extraction effect is preferable to that of the traditional signal processing methods such as empirical mode decomposition(EMD).展开更多
Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing metho...Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30.展开更多
Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater ...Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value.展开更多
The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved v...The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved variational mode decomposition(VMD)for noise echo signals is proposed.The number of decomposition layers of the traditional VMD is hard to determine,therefore,the center frequency similarity factor is firstly constructed and used as the judgment criterion to select the number of VMD decomposition layers adaptively;Secondly,VMD algorithm is used to decompose the echo signal into several modal components with a single modal component,and the useful echo components are extracted based on the features of the ultrasonic emission signal;Finally,the liquid density is calculated by extracting the amplitude and time of the echo from the modal components.The simulation results show that using the improved VMD to decompose the echo signal not only can improve the signal-to-noise ratio of the echo signal to 20.64 dB,but also can accurately obtain the echo information such as time and amplitude.Compared with the ensemble empirical mode decomposition(EEMD),this method effectively suppresses the modal aliasing,keeps the details of the signal to the maximum extent while suppressing noise,and improves the accuracy of the liquid density measurement.The density measurement accuracy can reach 0.21%of full scale.展开更多
Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal netw...Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms.展开更多
Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable beari...Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable bearing fault detection still remains a challenging task, especially in industrial applications. The objective of this work is to propose an adaptive variational mode decomposition (AVMD) technique for non-stationary signal analysis and bearing fault detection. The AVMD includes several steps in processing: 1) Signal characteristics are analyzed to determine the signal center frequency and the related parameters. 2) The ensemble-kurtosis index is suggested to decompose the target signal and select the most representative intrinsic mode functions (IMFs). 3) The envelope spectrum analysis is performed using the selected IMFs to identify the characteristic features for bearing fault detection. The effectiveness of the proposed AVMD technique is examined by experimental tests under different bearing conditions, with the comparison of other related bearing fault techniques.展开更多
Accurate wind power prediction can scientifically arrange wind power output and timely adjust power system dispatching plans. Wind power is associated with its uncertainty,multi-frequency and nonlinearity for it is su...Accurate wind power prediction can scientifically arrange wind power output and timely adjust power system dispatching plans. Wind power is associated with its uncertainty,multi-frequency and nonlinearity for it is susceptible to climatic factors such as temperature, air pressure and wind speed.Therefore, this paper proposes a wind power prediction model combining multi-frequency combination and feature selection.Firstly, the variational mode decomposition(VMD) is used to decompose the wind power data, and the sub-components with different fluctuation characteristics are obtained and divided into high-, intermediate-, and low-frequency components according to their fluctuation characteristics. Then, a feature set including historical data of wind power and meteorological factors is established, which chooses the feature sets of each component by using the max-relevance and min-redundancy(m RMR) feature selection method based on mutual information selected from the above set. Each component and its corresponding feature set are used as an input set for prediction afterwards. Thereafter, the high-frequency input set is predicted using back propagation neural network(BPNN), and the intermediate-and low-frequency input sets are predicted using least squares support vector machine(LS-SVM). After obtaining the prediction results of each component, BPNN is used for integration to obtain the final predicted value of wind power, and the ramping rate is verified. Finally, through the comparison, it is found that the proposed model has higher prediction accuracy.展开更多
Due to the significant intermittent,stochastic and non-stationary nature of wind power generation,it is difficult to achieve the desired prediction accuracy.Therefore,a wind power prediction method based on improved v...Due to the significant intermittent,stochastic and non-stationary nature of wind power generation,it is difficult to achieve the desired prediction accuracy.Therefore,a wind power prediction method based on improved variational modal decomposition with permutation entropy is proposed.First,based on the meteorological data of wind farms,the Spearman correlation coefficient method is used to filter the meteorological data that are strongly correlated with the wind power to establish the wind power prediction model data set;then the original wind power is decomposed using the improved variational modal decomposition technique to eliminate the noise in the data,and the decomposed wind power is reconstructed into a new subsequence by using the permutation entropy;with the meteorological data and the new subsequence as input variables,a stacking deeply integrated prediction model is developed;and finally the prediction results are obtained by optimizing the hyperparameters of the model algorithm through a genetic algorithm.The validity of the model is verified using a real data set from a wind farm in north-west China.The results show that the mean absolute error,root mean square error and mean absolute percentage error are improved by at least 33.1%,56.1%and 54.2%compared with the autoregressive integrated moving average model,the support vector machine,long short-term memory,extreme gradient enhancement and convolutional neural networks and long short-term memory models,indicating that the method has higher prediction accuracy.展开更多
Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, ...Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, the extraction of weak reflected waves becomes pivotal for optimizing migration image quality. This paper introduces a novel approach to extracting reflected waves by sequentially operating in the spatial frequency and curvelet domains. Using variation mode decomposition(VMD), single-channel spatial domain signals within the common offset gather are iteratively decomposed into high-wavenumber and low-wavenumber intrinsic mode functions(IMFs). The low-wavenumber IMF is then subtracted from the overall waveform to attenuate direct mode waves. Subsequently, the curvelet transform is employed to segregate upgoing and downgoing reflected waves within the filtered curvelet domain. As a result, direct mode waves are substantially suppressed, while the integrity of reflected waves is fully preserved. The efficacy of this approach is validated through processing synthetic and field data, underscoring its potential as a robust extraction technique.展开更多
The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibrati...The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibration spectrum of the permeability index,a prediction model of the permeability index based on the VMD-PSO-BP(variational mode decomposition-particle swarm optimization-back propagation)method was proposed.Firstly,the key factors that affect the permeability index of blast furnace were studied from multiple perspectives.Then,the permeability index was divided into multiple sub-modes based on the difference of frequency bands by the VMD algorithm,and a PSO-BP prediction model was established for each sub-mode.Finally,the prediction results of each sub-mode were summed to obtain the final one.The results show that the composite prediction accuracy by using the VMD algorithm is 3%higher than that of the traditional prediction method,which has better applicability.展开更多
Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s...Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.展开更多
Considering the noise problem of the acquisition signals frommechanical transmission systems,a novel denoising method is proposed that combines Variational Mode Decomposition(VMD)with wavelet thresholding.The key inno...Considering the noise problem of the acquisition signals frommechanical transmission systems,a novel denoising method is proposed that combines Variational Mode Decomposition(VMD)with wavelet thresholding.The key innovation of this method lies in the optimization of VMD parameters K and α using the improved Horned Lizard Optimization Algorithm(IHLOA).An inertia weight parameter is introduced into the random walk strategy of HLOA,and the related formula is improved.The acquisition signal can be adaptively decomposed into some Intrinsic Mode Functions(IMFs),and the high-noise IMFs are identified based on a correlation coefficient-variance method.Further noise reduction is achieved using wavelet thresholding.The proposed method is validated using simulated signals and experimental signals,and simulation results indicate that the proposed method surpasses original VMD,Empirical Mode Decomposition(EMD),and wavelet thresholding in terms of Signal-to-Noise Ratio(SNR)and Root Mean Square Error(RMSE),and experimental results indicate that the proposedmethod can effectively remove noise in terms of three evaluationmetrics.Furthermore,comparedwith FeatureModeDecomposition(FMD)andMultichannel Singular Spectrum Analysis(MSSA),this method has a better envelope spectrum.This method not only provides a solution for noise reduction in signal processing but also holds significant potential for applications in structural health monitoring and fault diagnosis.展开更多
This paper proposes an integrated multi-stage framework to enhance frequency modulated continuous wave(FMCW)automotive radar performance under high noise and interference.The four-stage pipeline is applied consecutive...This paper proposes an integrated multi-stage framework to enhance frequency modulated continuous wave(FMCW)automotive radar performance under high noise and interference.The four-stage pipeline is applied consecutively:(i)an improved independent component analysis(ICA)blindly separates the two-channel echoes,isolating target and interference components;(ii)a recursive least-squares(RLS)filter compensates amplitude-and phase-mismatches,restoring signal fidelity;(iii)variational mode decomposition(VMD)followed by the Hilbert-Huang Transform(HHT)extracts noise-free intrinsic mode functions(IMFs)and sharpens their time-frequency signatures;and(iv)HHT-based beat-frequency estimation reconstructs a clean echo and delivers accurate range information.Finally,key IMFs are reconstructed into a clean signal,and a beat-frequency estimation via HHT confirms accurate distance results,closely aligning with theoretical predictions.On synthetic data with an input signal-to-noise ratio(SNR)of 12.7 dB,the pipeline delivers a 7.6 dB SNR gain,yields a mean-squared error of 0.25 m2,and achieves a range root-mean-square error(Range-RMSE)of 0.50 m.Empirical evaluations demonstrate that this enhanced ICA and VMD/HHT scheme effectively restores the fundamental echo signature,providing a robust approach for advanced driver assistance systems(ADAS).展开更多
In order to suppress the white noise interference in partial discharge(PD)detection and accurately extract the characteristics of local discharge pulse acoustic signal of transformer under strong noise environment,the...In order to suppress the white noise interference in partial discharge(PD)detection and accurately extract the characteristics of local discharge pulse acoustic signal of transformer under strong noise environment,the adaptive separation and denoising of the discharge pulse acoustic signal were analyzed under low signal-to-noise ratio(SNR)environment.Firstly,the optimal decomposition mode number K of the variational mode decomposition(VMD)was determined based on Spearman correlation coefficient,then the reliability of the proposed Spearman-variational mode decomposition(SVMD)method decomposition was verified by simulated signals,and finally the actual discharge pulse acoustic signal was decomposed and denoised based on the Spearman correlation coefficient averaging threshold method to extract the eigenmode function components of the discharge pulse signal.The results showed that SVMD adaptively solved the unknown defects of VMD mode number,and effectively extracted the modal components of complex signals,and successfully realized the denoising of transformer partial discharge acoustic signals.The proposed method effectively removed white noise interference in the partial discharge acoustic signal and obtained a smooth filtered signal.It retained the integrity of the partial discharge signal to the maximum extent and was beneficial to the subsequent research of partial discharge.The improvement of VMD was helpful to promote its wide use in industrial equipment condition inspection.展开更多
The steel-epoxy-steel sandwich structures provide enhanced corrosion resistance and fatigue resistance,making them suitable for pipeline rehabilitation with effective repair and long-term durability.However,the repair...The steel-epoxy-steel sandwich structures provide enhanced corrosion resistance and fatigue resistance,making them suitable for pipeline rehabilitation with effective repair and long-term durability.However,the repair quality can be compromised by disbond between the steel and epoxy layers,whichmay result frominsufficient epoxy injection.Conventional ultrasonic testing faces challenges in accurately locating disbond defects due to aliased echo interference at interfaces.This paper proposes a signal processing algorithm for improving the accuracy of ultrasonic reflection method for detecting disbond defects between steel and epoxy layers.First,a coati optimization algorithmvariational mode decomposition(COA-VMD)is applied to adaptively decompose the ultrasonic signals and extract the intrinsic mode function components that show high correlation with the defect-related signals.Then,by calculating the relative reflectance at the interface and establishing a quantitative evaluation index based on acoustic impedance discontinuity,the locations of disbond defects are identified.Experimental results demonstrate that this method can effectively detect the locations of disbond defects between steel and epoxy layers.展开更多
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t...Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.展开更多
基金funded by National Key R&D Program of China(No.2022YFC3003403)Sichuan Science and Technology Program(No.2024NSFSC0072)+1 种基金Natural Science Foundation of Hebei Province(No.F2021201031)Geological Survey Project of China Geological Survey(No.DD20230442).
文摘Infrasound,known for its strong penetration and low attenuation,is extensively used in monitoring and warning systems for debris flows.Here,a debris-flow forecasting method was proposed by combining infrasound-based variational mode decomposition and Autoregressive Integrated Moving Average(ARIMA)model.High-precision infrasound sensor was utilized in experiments to record signals under twelve varying conditions of debris flow volume and velocity.Variational mode decomposition was performed on the detected raw signals,and the optimal decomposition scale and penalty factor were obtained through the sparrow search algorithm.The Hilbert transform,rescaled range analysis,power spectrum analysis,and Pearson correlation coefficients judgment criteria were employed to separate and reconstruct the signals.Based on the reconstructed infrasound signals,an ARIMA model was constructed to forecast the trend of debris flow infrasound signal.Results reveal that the Hilbert transform effectively separated noise,and the predictive model’s results fell within a 95%confidence interval.The Mean Absolute Percentage Error(MAPE)across four experiments were 4.87%,5.23%,5.32%and 4.47%,respectively,showing a satisfactory accuracy and providing an alternative for predicting debris flow by infrasound signals.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
文摘In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance.
基金supported by the National Natural Science Foundation of China(No.51904173)Shandong Provincial Natural Science Foundation(No.ZR2018MEE008)the Project of Shandong Province Higher Educational Science and Technology Program(No.J18KA307).
文摘Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the effective microseismic signal from polluted noisy signals,a novel microseismic signal denoising method that combines the variational mode decomposition(VMD)and permutation entropy(PE),which we denote as VMD–PE,is proposed in this paper.VMD is a recently introduced technique for adaptive signal decomposition,where K is an important decomposing parameter that determines the number of modes.VMD provides a predictable eff ect on the nature of detected modes.In this work,we present a method that addresses the problem of selecting an appropriate K value by constructing a simulation signal whose spectrum is similar to that of a mine microseismic signal and apply this value to the VMD–PE method.In addition,PE is developed to identify the relevant effective microseismic signal modes,which are reconstructed to realize signal filtering.The experimental results show that the VMD–PE method remarkably outperforms the empirical mode decomposition(EMD)–VMD filtering and detrended fl uctuation analysis(DFA)–VMD denoising methods of the simulated and real microseismic signals.We expect that this novel method can inspire and help evaluate new ideas in this field.
基金National Natural Science Foundation of China(No.51675399)。
文摘In the pump-controlled motor hydraulic transmission system,when the pressure pulsation frequencies seperately generated by the pump and the motor are close to each other,the hydraulic system will generate a strong pressure beat vibration phenomenon,which will seriously affect the smooth running of the hydraulic system.However,the modulated pressure signal also carries information related to the operating state of the hydraulic system,and a accurate extraction of pressure vibration characteristics is the key to obtain the operating state information of the hydraulic system.In order to extract the pressure beat vibration signal component effectively from the multi-component time-varying aliasing pressure signal and reconstruct the time domain characteristics,an extraction method of the pressure beat vibration characteristics of the hydraulic transmission system based on variational mode decomposition(VMD)is proposed.The experimental results show that the VMD method can accurately extract the pressure beat vibration characteristics from the high-pressure oil pressure signal of the hydraulic system,and the extraction effect is preferable to that of the traditional signal processing methods such as empirical mode decomposition(EMD).
基金supported in part by the Science and Technology Major Project of Anhui Province(Grant No.17030901037)in part by the Humanities and Social Science Fund of Ministry of Education of China(Grant No.19YJAZH098)+2 种基金in part by the Program for Synergy Innovation in the Anhui Higher Education Institutions of China(Grant Nos.GXXT-2020-012,GXXT-2021-044)in part by Science and Technology Planning Project of Wuhu City,Anhui Province,China(Grant No.2021jc1-2)part by Research Start-Up Fund for Introducing Talents from Anhui Polytechnic University(Grant No.2021YQQ066).
文摘Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30.
基金supported by the National Natural Science Foundation of China(Grant No.51709228)。
文摘Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value.
文摘The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved variational mode decomposition(VMD)for noise echo signals is proposed.The number of decomposition layers of the traditional VMD is hard to determine,therefore,the center frequency similarity factor is firstly constructed and used as the judgment criterion to select the number of VMD decomposition layers adaptively;Secondly,VMD algorithm is used to decompose the echo signal into several modal components with a single modal component,and the useful echo components are extracted based on the features of the ultrasonic emission signal;Finally,the liquid density is calculated by extracting the amplitude and time of the echo from the modal components.The simulation results show that using the improved VMD to decompose the echo signal not only can improve the signal-to-noise ratio of the echo signal to 20.64 dB,but also can accurately obtain the echo information such as time and amplitude.Compared with the ensemble empirical mode decomposition(EEMD),this method effectively suppresses the modal aliasing,keeps the details of the signal to the maximum extent while suppressing noise,and improves the accuracy of the liquid density measurement.The density measurement accuracy can reach 0.21%of full scale.
基金supported by the undergraduate training program for innovation and entrepreneurship of NUIST(XJDC202110300239).
文摘Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms.
文摘Rolling element bearings are commonly used in rotary mechanical and electrical equipment. According to investigation, more than half of rotating machinery defects are related to bearing faults. However, reliable bearing fault detection still remains a challenging task, especially in industrial applications. The objective of this work is to propose an adaptive variational mode decomposition (AVMD) technique for non-stationary signal analysis and bearing fault detection. The AVMD includes several steps in processing: 1) Signal characteristics are analyzed to determine the signal center frequency and the related parameters. 2) The ensemble-kurtosis index is suggested to decompose the target signal and select the most representative intrinsic mode functions (IMFs). 3) The envelope spectrum analysis is performed using the selected IMFs to identify the characteristic features for bearing fault detection. The effectiveness of the proposed AVMD technique is examined by experimental tests under different bearing conditions, with the comparison of other related bearing fault techniques.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0401409)the Research Fund of the State Key Laboratory of Eco-hydraulics in Northwest Arid Region,Xi’ an University of Technology (No. 2019KJCXTD-5)+1 种基金the Key Research and Development Plan of Shaanxi Province (No. 2018-ZDCXL-GY-10-04)the Natural Science Basic Research Program of Shaanxi (No. 2019JLZ-15)。
文摘Accurate wind power prediction can scientifically arrange wind power output and timely adjust power system dispatching plans. Wind power is associated with its uncertainty,multi-frequency and nonlinearity for it is susceptible to climatic factors such as temperature, air pressure and wind speed.Therefore, this paper proposes a wind power prediction model combining multi-frequency combination and feature selection.Firstly, the variational mode decomposition(VMD) is used to decompose the wind power data, and the sub-components with different fluctuation characteristics are obtained and divided into high-, intermediate-, and low-frequency components according to their fluctuation characteristics. Then, a feature set including historical data of wind power and meteorological factors is established, which chooses the feature sets of each component by using the max-relevance and min-redundancy(m RMR) feature selection method based on mutual information selected from the above set. Each component and its corresponding feature set are used as an input set for prediction afterwards. Thereafter, the high-frequency input set is predicted using back propagation neural network(BPNN), and the intermediate-and low-frequency input sets are predicted using least squares support vector machine(LS-SVM). After obtaining the prediction results of each component, BPNN is used for integration to obtain the final predicted value of wind power, and the ramping rate is verified. Finally, through the comparison, it is found that the proposed model has higher prediction accuracy.
基金Funding for this work was provide by the High-level and High-Skilled Leading Talent Training Project of Jiangxi Province(202223323)the Jiangxi Postgraduate Special Innovation Fund(YC2022-s528)the State Key Laboratory of Rail Transit Infrastructure Performance Monitoring and Assurance Open Project Grant(HJGZ2022203).
文摘Due to the significant intermittent,stochastic and non-stationary nature of wind power generation,it is difficult to achieve the desired prediction accuracy.Therefore,a wind power prediction method based on improved variational modal decomposition with permutation entropy is proposed.First,based on the meteorological data of wind farms,the Spearman correlation coefficient method is used to filter the meteorological data that are strongly correlated with the wind power to establish the wind power prediction model data set;then the original wind power is decomposed using the improved variational modal decomposition technique to eliminate the noise in the data,and the decomposed wind power is reconstructed into a new subsequence by using the permutation entropy;with the meteorological data and the new subsequence as input variables,a stacking deeply integrated prediction model is developed;and finally the prediction results are obtained by optimizing the hyperparameters of the model algorithm through a genetic algorithm.The validity of the model is verified using a real data set from a wind farm in north-west China.The results show that the mean absolute error,root mean square error and mean absolute percentage error are improved by at least 33.1%,56.1%and 54.2%compared with the autoregressive integrated moving average model,the support vector machine,long short-term memory,extreme gradient enhancement and convolutional neural networks and long short-term memory models,indicating that the method has higher prediction accuracy.
基金supported by the National Natural Science Foundation of China (grant No. 42204126, 42174145, 42104132)Laoshan National Laboratory Science and Technology Innovation Project (grant No. LSKJ202203407)。
文摘Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, the extraction of weak reflected waves becomes pivotal for optimizing migration image quality. This paper introduces a novel approach to extracting reflected waves by sequentially operating in the spatial frequency and curvelet domains. Using variation mode decomposition(VMD), single-channel spatial domain signals within the common offset gather are iteratively decomposed into high-wavenumber and low-wavenumber intrinsic mode functions(IMFs). The low-wavenumber IMF is then subtracted from the overall waveform to attenuate direct mode waves. Subsequently, the curvelet transform is employed to segregate upgoing and downgoing reflected waves within the filtered curvelet domain. As a result, direct mode waves are substantially suppressed, while the integrity of reflected waves is fully preserved. The efficacy of this approach is validated through processing synthetic and field data, underscoring its potential as a robust extraction technique.
基金supports from the National Natural Science Foundation of China Youth Fund Project(52004096).
文摘The permeability index is one of the important production indicators to monitor the operation of blast furnace.It is crucial to grasp the trends of changes in the new permeability index in time.For the complex vibration spectrum of the permeability index,a prediction model of the permeability index based on the VMD-PSO-BP(variational mode decomposition-particle swarm optimization-back propagation)method was proposed.Firstly,the key factors that affect the permeability index of blast furnace were studied from multiple perspectives.Then,the permeability index was divided into multiple sub-modes based on the difference of frequency bands by the VMD algorithm,and a PSO-BP prediction model was established for each sub-mode.Finally,the prediction results of each sub-mode were summed to obtain the final one.The results show that the composite prediction accuracy by using the VMD algorithm is 3%higher than that of the traditional prediction method,which has better applicability.
文摘Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms.
基金supported by Central Guidance on Local Science and Technology Development Fund of Hebei Province(Grant No.226Z1906G)funded by Science Research Project of Hebei Education Department(CXY2024038)+1 种基金funded by Basic Research Project of Shijiazhuang University in Hebei Province(241791157A)National Natural Science Foundation of China(52206224).
文摘Considering the noise problem of the acquisition signals frommechanical transmission systems,a novel denoising method is proposed that combines Variational Mode Decomposition(VMD)with wavelet thresholding.The key innovation of this method lies in the optimization of VMD parameters K and α using the improved Horned Lizard Optimization Algorithm(IHLOA).An inertia weight parameter is introduced into the random walk strategy of HLOA,and the related formula is improved.The acquisition signal can be adaptively decomposed into some Intrinsic Mode Functions(IMFs),and the high-noise IMFs are identified based on a correlation coefficient-variance method.Further noise reduction is achieved using wavelet thresholding.The proposed method is validated using simulated signals and experimental signals,and simulation results indicate that the proposed method surpasses original VMD,Empirical Mode Decomposition(EMD),and wavelet thresholding in terms of Signal-to-Noise Ratio(SNR)and Root Mean Square Error(RMSE),and experimental results indicate that the proposedmethod can effectively remove noise in terms of three evaluationmetrics.Furthermore,comparedwith FeatureModeDecomposition(FMD)andMultichannel Singular Spectrum Analysis(MSSA),this method has a better envelope spectrum.This method not only provides a solution for noise reduction in signal processing but also holds significant potential for applications in structural health monitoring and fault diagnosis.
基金the National Science and Technology Council,Taiwan,for financially supporting this research(grant No.NSTC 113-2221-E-018-011)the Ministry of Education's Teaching Practice Research Program,Taiwan(PSK1134099).
文摘This paper proposes an integrated multi-stage framework to enhance frequency modulated continuous wave(FMCW)automotive radar performance under high noise and interference.The four-stage pipeline is applied consecutively:(i)an improved independent component analysis(ICA)blindly separates the two-channel echoes,isolating target and interference components;(ii)a recursive least-squares(RLS)filter compensates amplitude-and phase-mismatches,restoring signal fidelity;(iii)variational mode decomposition(VMD)followed by the Hilbert-Huang Transform(HHT)extracts noise-free intrinsic mode functions(IMFs)and sharpens their time-frequency signatures;and(iv)HHT-based beat-frequency estimation reconstructs a clean echo and delivers accurate range information.Finally,key IMFs are reconstructed into a clean signal,and a beat-frequency estimation via HHT confirms accurate distance results,closely aligning with theoretical predictions.On synthetic data with an input signal-to-noise ratio(SNR)of 12.7 dB,the pipeline delivers a 7.6 dB SNR gain,yields a mean-squared error of 0.25 m2,and achieves a range root-mean-square error(Range-RMSE)of 0.50 m.Empirical evaluations demonstrate that this enhanced ICA and VMD/HHT scheme effectively restores the fundamental echo signature,providing a robust approach for advanced driver assistance systems(ADAS).
基金supported by State Grid Gansu Electric Power Research Institute(No.52272219000Q).
文摘In order to suppress the white noise interference in partial discharge(PD)detection and accurately extract the characteristics of local discharge pulse acoustic signal of transformer under strong noise environment,the adaptive separation and denoising of the discharge pulse acoustic signal were analyzed under low signal-to-noise ratio(SNR)environment.Firstly,the optimal decomposition mode number K of the variational mode decomposition(VMD)was determined based on Spearman correlation coefficient,then the reliability of the proposed Spearman-variational mode decomposition(SVMD)method decomposition was verified by simulated signals,and finally the actual discharge pulse acoustic signal was decomposed and denoised based on the Spearman correlation coefficient averaging threshold method to extract the eigenmode function components of the discharge pulse signal.The results showed that SVMD adaptively solved the unknown defects of VMD mode number,and effectively extracted the modal components of complex signals,and successfully realized the denoising of transformer partial discharge acoustic signals.The proposed method effectively removed white noise interference in the partial discharge acoustic signal and obtained a smooth filtered signal.It retained the integrity of the partial discharge signal to the maximum extent and was beneficial to the subsequent research of partial discharge.The improvement of VMD was helpful to promote its wide use in industrial equipment condition inspection.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang University(Grant No.015731201-2024KQ126)National Key R&D Program of China(Grant No.2023YFF0716600)National Natural Science Foundation of China(Grant No.62271021).
文摘The steel-epoxy-steel sandwich structures provide enhanced corrosion resistance and fatigue resistance,making them suitable for pipeline rehabilitation with effective repair and long-term durability.However,the repair quality can be compromised by disbond between the steel and epoxy layers,whichmay result frominsufficient epoxy injection.Conventional ultrasonic testing faces challenges in accurately locating disbond defects due to aliased echo interference at interfaces.This paper proposes a signal processing algorithm for improving the accuracy of ultrasonic reflection method for detecting disbond defects between steel and epoxy layers.First,a coati optimization algorithmvariational mode decomposition(COA-VMD)is applied to adaptively decompose the ultrasonic signals and extract the intrinsic mode function components that show high correlation with the defect-related signals.Then,by calculating the relative reflectance at the interface and establishing a quantitative evaluation index based on acoustic impedance discontinuity,the locations of disbond defects are identified.Experimental results demonstrate that this method can effectively detect the locations of disbond defects between steel and epoxy layers.
基金Project(61873283)supported by the National Natural Science Foundation of ChinaProject(KQ1707017)supported by the Changsha Science&Technology Project,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.