Over the last ten years, Finite Element Exterior Calculus (FEEC) has been developed as a general framework for linear mixed variational problems, their numerical approximation by mixed methods, and their error analy...Over the last ten years, Finite Element Exterior Calculus (FEEC) has been developed as a general framework for linear mixed variational problems, their numerical approximation by mixed methods, and their error analysis. The basic approach in FEEC, pioneered by Arnold, Falk, and Winther in two seminal articles in 2006 and 2010, interprets these problems in the setting of Hilbert complexes, leading to a more general and complete understanding. Over the last five years, the FEEC framework has been extended to a broader set of problems. One such extension, due to Hoist and Stern in 2012, was to problems with variational crimes, allowing for the analysis and numerical approximation of linear and geometric elliptic partial differential equations oil Riemannian manifolds of arbitrary spatial dimension. Their results substantially generalize the existing surface finite element approximation theory in several respects. In 2014, Gillette, Hoist, and Zhu extended FEEC in another direction, namely to parabolic and hyperbolic evolution systems by combining the FEEC framework for elliptic operators with classical approaches for parabolic and hyperbolic operators, by viewing solutions to the evolution problem as lying in Bochner spaces (spaces of Banach-space valued parametrized curves). Related work on developing an FEEC theory for parabolic evolution problems has also been done independently by Arnold and Chen. In this article, we extend the work of Gillette-Holst- Zhu and Arnold-Chen to evolution problems on Riemannian manifolds, through tile use of framework developed by Holst and Stern for analyzing variational crimes. We establish a priori error estimates that reduce to the results from earlier work in tile flat (non-criminal) setting. Some numerical examples are also presented.展开更多
Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, ...Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, while divergence-free mixed finite elements de- liver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modi- fied Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 ve- locity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure- independent L2 velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.展开更多
文摘Over the last ten years, Finite Element Exterior Calculus (FEEC) has been developed as a general framework for linear mixed variational problems, their numerical approximation by mixed methods, and their error analysis. The basic approach in FEEC, pioneered by Arnold, Falk, and Winther in two seminal articles in 2006 and 2010, interprets these problems in the setting of Hilbert complexes, leading to a more general and complete understanding. Over the last five years, the FEEC framework has been extended to a broader set of problems. One such extension, due to Hoist and Stern in 2012, was to problems with variational crimes, allowing for the analysis and numerical approximation of linear and geometric elliptic partial differential equations oil Riemannian manifolds of arbitrary spatial dimension. Their results substantially generalize the existing surface finite element approximation theory in several respects. In 2014, Gillette, Hoist, and Zhu extended FEEC in another direction, namely to parabolic and hyperbolic evolution systems by combining the FEEC framework for elliptic operators with classical approaches for parabolic and hyperbolic operators, by viewing solutions to the evolution problem as lying in Bochner spaces (spaces of Banach-space valued parametrized curves). Related work on developing an FEEC theory for parabolic evolution problems has also been done independently by Arnold and Chen. In this article, we extend the work of Gillette-Holst- Zhu and Arnold-Chen to evolution problems on Riemannian manifolds, through tile use of framework developed by Holst and Stern for analyzing variational crimes. We establish a priori error estimates that reduce to the results from earlier work in tile flat (non-criminal) setting. Some numerical examples are also presented.
文摘Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the ve- locity error become pressure-dependent, while divergence-free mixed finite elements de- liver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modi- fied Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H1 ve- locity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure- independent L2 velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.