期刊文献+
共找到1,060篇文章
< 1 2 53 >
每页显示 20 50 100
Anchoring Bolt Detection Based on Morphological Filtering and Variational Modal Decomposition 被引量:1
1
作者 XU Juncai REN Qingwen LEI Bangjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第4期628-634,共7页
The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the va... The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the variational modal decomposition(VMD)method is introduced into the bolt detection signal analysis.On the basis of morphological filtering(MF)and the VMD method,a VMD?combined MF principle is established into a bolt detection signal analysis method(MF?VMD).MF?VMD is used to analyze the vibration and actual bolt detection signals of the simulation.Results show that MF?VMD effectively separates intrinsic mode function,even under strong interference.In comparison with conventional VMD method,the proposed method can remove noise interference.An intrinsic mode function of the field detection signal can be effectively identified by reflecting the signal at the bottom of the bolt. 展开更多
关键词 bolt detection variational modal decomposition morphological filtering intrinsic mode function
在线阅读 下载PDF
Cloud Resource Integrated Prediction Model Based on Variational Modal Decomposition-Permutation Entropy and LSTM
2
作者 Xinfei Li Xiaolan Xie +1 位作者 Yigang Tang Qiang Guo 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2707-2724,共18页
Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking co... Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy. 展开更多
关键词 Cloud resource prediction variational modal decomposition permutation entropy long and short-term neural network stacking integration
在线阅读 下载PDF
基于SSA-VMD的空天地算力网络中数字孪生逻辑靶场负载预测 被引量:1
3
作者 陈浩 党政 +2 位作者 黑新宏 赵彤 张杰 《计算机工程》 北大核心 2025年第5期20-32,共13页
在空天地多层次算力网络背景下,针对数字孪生逻辑靶场中因负载数据复杂性和非平稳特征带来的精准预测挑战,提出融合格拉姆转场(GAF)、卷积神经网络(CNN)、通道注意力机制的压缩与激励网络(SENet)和门控循环单元(GRU)的GCSG模型。GCSG模... 在空天地多层次算力网络背景下,针对数字孪生逻辑靶场中因负载数据复杂性和非平稳特征带来的精准预测挑战,提出融合格拉姆转场(GAF)、卷积神经网络(CNN)、通道注意力机制的压缩与激励网络(SENet)和门控循环单元(GRU)的GCSG模型。GCSG模型通过GAF将一维负载数据转换为二维图像,利用CNN提取局部特征,使用SENet优化特征重要性,采用GRU捕捉时序特征,实现了高效的特征融合和精准预测。此外,GCSG模型采用融合麻雀搜索算法(SSA)的变分模态分解(VMD)对负载数据进行平稳化处理,进一步提高了预测性能。实验结果表明,GCSG模型在不同数据长度下均表现出优异的预测精度和稳定性,且在多步预测任务中同样表现突出。因此,GCSG模型显著提升了负载数据的预测精度,为空天地算力网络中的数字孪生系统负载预测提供了强有力的解决方案。 展开更多
关键词 空天地多层次算力网络 数字孪生 逻辑靶场 负载预测 变分模态分解
在线阅读 下载PDF
VMD与时间-空间分数阶扩散模型联合分段TEM滤波 被引量:1
4
作者 谭超 谭继伟 +4 位作者 沈艳军 袁永榜 欧星作 闵薪宇 孙其浩 《重庆邮电大学学报(自然科学版)》 北大核心 2025年第2期204-214,共11页
为滤除瞬变电磁(transient electromagnetic method,TEM)信号中的噪声,提出一种变分模态分解(variational mode decomposition,VMD)与时间-空间分数阶非线性扩散模型(time-space fractional-order diffusion model,TSFDM)的分段滤波方... 为滤除瞬变电磁(transient electromagnetic method,TEM)信号中的噪声,提出一种变分模态分解(variational mode decomposition,VMD)与时间-空间分数阶非线性扩散模型(time-space fractional-order diffusion model,TSFDM)的分段滤波方法。针对TEM信号的特点,将采样信号进行动态阈值分段处理;采用VMD对每一段信号自适应分解,保留第一个内涵模态(intrinsic mode function,IMF)分量作为初次滤波数据;分别使用差分离散和使用带位移的Grunwald-Letnikov逼近法来近似求解时间-空间分数阶扩散方程的时间Caputo分数阶导数和空间Riemann-Liouville分数阶导数,建立迭代收敛差分方程,设置平滑算子得到TSFDM滤波器;利用叠加平均法对TSFDM迭代计算得到的二次滤波信号进行拼接得到完整TEM信号。仿真结果表明,使用所提方法后,整体信号质量提高约22 dB,后期信号信噪比提高约38 dB,与原始信号接近;与传统方法相比,所提方法各项评价指标更优;实测TEM信号中衰减特征被保留,有效还原了频域曲线变化趋势。 展开更多
关键词 瞬变电磁信号(TEM)滤波 变分模态分解 阈值分段 时间-空间分数阶扩散模型(TSFDM) 差分方程
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
5
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于VMD-1DCNN-GRU的轴承故障诊断 被引量:1
6
作者 宋金波 刘锦玲 +2 位作者 闫荣喜 王鹏 路敬祎 《吉林大学学报(信息科学版)》 2025年第1期34-42,共9页
针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausd... 针对滚动轴承信号含噪声导致诊断模型训练困难的问题,提出了一种基于变分模态分解(VMD:Variational Mode Decomposition)和深度学习相结合的轴承故障诊断模型。首先,该方法通过VMD对轴承信号进行模态分解,并且通过豪斯多夫距离(HD:Hausdorff Distance)完成去噪,尽可能保留原始信号的特征。其次,将选择的有效信号输入一维卷积神经网络(1DCNN:1D Convolutional Neural Networks)和门控循环单元(GRU:Gate Recurrent Unit)相结合的网络结构(1DCNN-GRU)中完成数据的分类,实现轴承的故障诊断。通过与常见的轴承故障诊断方法比较,所提VMD-1DCNN-GRU模型具有最高的准确性。实验结果验证了该模型对轴承故障有效分类的可行性,具有一定的研究意义。 展开更多
关键词 故障诊断 深度学习 变分模态分解 一维卷积神经网络 门控循环单元
在线阅读 下载PDF
基于VMD-HD-VMD的信号去噪方法 被引量:1
7
作者 王冬梅 肖建利 +1 位作者 路敬祎 何彬 《吉林大学学报(信息科学版)》 2025年第2期238-244,共7页
为区分变分模态分解(VMD:Variational Mode Decomposition)分解后的有效分量和噪声分量,并提高VMD的去噪效果,提出了一种VMD与豪斯多夫距离(HD:Hausdorff Distance)结合的去噪算法(VMD-HD-VMD)。首先利用VMD将原始信号分解为K个固有模... 为区分变分模态分解(VMD:Variational Mode Decomposition)分解后的有效分量和噪声分量,并提高VMD的去噪效果,提出了一种VMD与豪斯多夫距离(HD:Hausdorff Distance)结合的去噪算法(VMD-HD-VMD)。首先利用VMD将原始信号分解为K个固有模态函数(IMF:Intrinsic Mode Function),分别计算IMF分量的概率密度函数的HD值,并根据HD值区分有效分量与噪声分量。然后将噪声分量再次进行VMD分解,利用相关系数选取出有效分量,并与第1次分解的有效分量进行重构。最后将此方法应用于管道泄漏信号的去噪。仿真实验和管道泄漏信号处理结果表明,相比集合经验模态分解(EEMD:Ensemble Empirical Mode Decomposition)、VMD、VMD联合小波去噪,该方法取得了更好的去噪效果。 展开更多
关键词 变分模态分解 豪斯多夫距离 管道泄漏 去噪
在线阅读 下载PDF
基于VMD-CNN-BiTCN滚动轴承故障诊断 被引量:3
8
作者 徐志祥 玄永伟 +1 位作者 王洪洋 王壬杰 《微特电机》 2025年第2期68-73,共6页
针对滚动轴承故障诊断中,传统卷积神经网络(CNN)特征提取感受野受限、无法有效提取数据时序特征的问题,提出了一种CNN结合双向时间卷积网络(BiTCN)的模型,该模型能够扩展感受野并有效捕获数据的时序特征。将原始振动信号通过变分模态(V... 针对滚动轴承故障诊断中,传统卷积神经网络(CNN)特征提取感受野受限、无法有效提取数据时序特征的问题,提出了一种CNN结合双向时间卷积网络(BiTCN)的模型,该模型能够扩展感受野并有效捕获数据的时序特征。将原始振动信号通过变分模态(VMD)分解为K个本征模函数(IMF);将分解后的信号输入到CNN层中进行特征提取和信号压缩;将该信号送入BiTCN中,提取正反两个方向的时序特征,使用膨胀卷积最大化感受野;通过池化层和全连接层实现滚动轴承故障诊断。实验结果显示,该模型在特征提取能力和时序特征感知具有显著优势,能够在多个数据集中表现出良好的故障诊断性能和泛化能力。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 双向时间卷积网络 变分模态分解
在线阅读 下载PDF
基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法
9
作者 刘亚荣 支正新 谢晓兰 《科学技术与工程》 北大核心 2025年第28期12013-12022,共10页
针对变分模态分解(variational mode decomposition,VMD)人为选择惩罚因子和模态个数难以有效分解振动信号,导致故障诊断识别率低的问题,提出一种基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法。首先,利用Cubic混沌映射、黄金... 针对变分模态分解(variational mode decomposition,VMD)人为选择惩罚因子和模态个数难以有效分解振动信号,导致故障诊断识别率低的问题,提出一种基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法。首先,利用Cubic混沌映射、黄金正弦策略改进海象优化算法(improved walrus optimization algorithm,IWaOA)。然后用IWaOA优化VMD,找出最佳的惩罚因子和模态个数,再使用VMD对振动信号进行分解并计算各个模态分量的7种熵值特征,建立IWaOA-VMD特征提取模型。其次,采用线性判别分析(linear discriminant analysis,LDA)方法对7种熵值特征进行降维融合,得到融合后的特征向量输入反向传播(back propagation,BP)神经网络中进行识别,建立LDA-BP故障识别模型。最后,对本文方法进行实验验证。结果表明:所提方法在对凯斯西储大学轴承数据集上的故障识别准确率达99.58%,且在强噪声干扰下达到92%以上的准确率;为验证其适用性,进一步在对西安交通大学XJTU-SY数据集上的故障识别准确率达到100%,证实了所提方法的噪声鲁棒性与多源数据适用性。 展开更多
关键词 振动信号 变分模态分解(vmd) 特征提取 故障诊断
在线阅读 下载PDF
基于DAS-VMD的甲烷/一氧化碳痕量气体同步监测及噪声抑制方法
10
作者 邵昊 袁玉洁 +2 位作者 王凯 张贝 黎奉标 《中国安全生产科学技术》 北大核心 2025年第10期88-95,共8页
为提高煤矿有毒有害气体CH_(4)和CO的实时动态监测能力,基于直接激光吸收光谱(DAS)与变分模态分解法(VMD),研究CH_(4)和CO双组份气体同步在线监测系统,并进行试验验证。针对CH_(4)和CO痕量气体,选用中心波长为1653.4 nm和2325.2 nm的2... 为提高煤矿有毒有害气体CH_(4)和CO的实时动态监测能力,基于直接激光吸收光谱(DAS)与变分模态分解法(VMD),研究CH_(4)和CO双组份气体同步在线监测系统,并进行试验验证。针对CH_(4)和CO痕量气体,选用中心波长为1653.4 nm和2325.2 nm的2台分布式反馈激光器,采用时分复用(TDM)技术,构建双组份痕量气体同步在线监测系统,克服双激光器工作时的相互干扰;优化VMD方法,实现信号分解和噪声抑制,提高检测系统的信噪比;搭建煤自燃在线监测实验平台,开展煤自燃长时间的在线监测试验。研究结果表明:降噪后CH_(4)和CO的探测极限分别为9.4×10^(-6)%与9.9×10^(-6)%,CH_(4)和CO检测极限降幅为38.4%,39.2%;所构建系统在煤自燃过程中对CH_(4)和CO体积分数变化具有良好的跟踪能力与检测可靠性。研究结果可为煤矿灾害气体的高精度、高稳定性实时监测提供可靠的技术手段,提高煤自燃早期预警能力。 展开更多
关键词 直接激光吸收光谱(DAS) 变分模态分解法(vmd) 甲烷 一氧化碳 痕量气体 噪声抑制
在线阅读 下载PDF
基于VMD-Itransformer-MOSSA模型的短期风电功率预测方法
11
作者 张伟 高鹭 +1 位作者 秦岭 李伟 《计算机工程与设计》 北大核心 2025年第9期2690-2698,共9页
为解决天气预报存在较小的误差,使风电功率预测产生巨大误差的问题,提出一种结合VMD算法和MOSSA优化的Transformer模型用于短期风力预测。应用变分模态分解处理天气预报风速和实测风速间的误差,将分解结果结合天气预报信息中的其它部分... 为解决天气预报存在较小的误差,使风电功率预测产生巨大误差的问题,提出一种结合VMD算法和MOSSA优化的Transformer模型用于短期风力预测。应用变分模态分解处理天气预报风速和实测风速间的误差,将分解结果结合天气预报信息中的其它部分特征作为改进的Transformer模型输入。通过改进麻雀搜索算法(SSA)优化修正模型的关键参数,提高预测准确性。将预测的风速误差与天气预报风速相加即得到修正后的天气预报风速并计算风功率。仿真结果表明,该模型方法在准确性上优于基准模型,验证了所提出的改进组合模型有效性。 展开更多
关键词 风速修正 变分模态分解 改进的变压器 麻雀搜索算法 短期风电功率 数据预处理 天气预报信息
在线阅读 下载PDF
基于参数优化VMD的心率检测去噪算法
12
作者 肖剑 张现国 +2 位作者 宋烨 杨小苑 程鸿亮 《现代雷达》 北大核心 2025年第6期46-55,共10页
针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性... 针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性和全局搜索能力,文中利用ICOA对VMD的最佳适应度参数进行搜索,确定惩罚参数和分量个数,对心跳信号进行重构,从而实现心跳信号的干扰噪声去除。实验结果表明,ICOA-VMD方法具有收敛速度快、精度高的特点,信噪比和均方误差的评估和时域分析验证了该算法相较于小波变换和经验模态分解具有更好的性能。在不同距离的常规环境下,该方法针对不同受试者的心率检测平均精确度可以达到95.40%。 展开更多
关键词 毫米波雷达 信号处理 心率检测 浣熊优化算法 变分模态分解
原文传递
基于TTAO-VMD与LOA分析的锂离子电池故障诊断方法
13
作者 廖力 李兴科 +3 位作者 王意 黄杨 郑全新 姜久春 《电源技术》 北大核心 2025年第9期1881-1889,共9页
锂离子电池广泛应用于电动汽车中,其热失控故障与严重不一致性故障已成为严重的安全隐患。提出了一种基于三角拓扑聚合优化(TTAO)算法优化变分模态分解(VMD)并结合纵向离群平均值(LOA)分析的电池故障诊断方法。通过TTAO对VMD中的模态数... 锂离子电池广泛应用于电动汽车中,其热失控故障与严重不一致性故障已成为严重的安全隐患。提出了一种基于三角拓扑聚合优化(TTAO)算法优化变分模态分解(VMD)并结合纵向离群平均值(LOA)分析的电池故障诊断方法。通过TTAO对VMD中的模态数K与惩罚因子a进行自适应寻优,提高信号分解的准确性与稳定性;提取前两个本征模态函数(IMF)作为故障特征,结合滑动窗口与LOA方法构建电压异常检测机制,借助阈值判定策略实现了对热失控故障的提前预警,以及对严重不一致性故障电池的准确识别与定位。实验结果基于真实车辆运行数据验证了该方法的鲁棒性和可靠性,相较于传统相关系数方法,该方法表现出更高的鲁棒性和更低的误报。 展开更多
关键词 锂离子电池 三角拓扑聚合优化算法 变分模态分解 纵向离群平均值 故障诊断
在线阅读 下载PDF
GA-2D-VMD联合FNLM的医学超声图像去噪方法研究
14
作者 闫洪波 那毅然 +1 位作者 沈雅楠 徐洋 《机械设计与制造》 北大核心 2025年第2期375-379,384,共6页
医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进... 医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进行自适应寻优,接着采用优化2D-VMD分解噪声图像,并借助相关系数筛选有效分量,然后使用FNLM滤波去噪,最后将去噪后的子模态重构完成去噪。实验结果证明,该方法具有优秀的去噪效果和保留图像边缘细节信息的能力,客观评价指标亦有明显的提升。 展开更多
关键词 斑点噪声 遗传算法 二维变分模态分解 参数优化 快速非局部均值 图像去噪
在线阅读 下载PDF
融合小波去噪与VMD-NTEO的输电线路故障定位
15
作者 周军 曲振国 战紫昂 《电力系统及其自动化学报》 北大核心 2025年第7期141-150,共10页
为解决输电线路故障行波波头在噪声背景下检测困难的问题,提出一种融合小波去噪与变分模态分解结合改进Teager能量算子的行波波头检测新方法。首先,将含噪行波信号经所提的新小波阈值函数进行去噪处理,有效提高输出信号的信噪比;然后,... 为解决输电线路故障行波波头在噪声背景下检测困难的问题,提出一种融合小波去噪与变分模态分解结合改进Teager能量算子的行波波头检测新方法。首先,将含噪行波信号经所提的新小波阈值函数进行去噪处理,有效提高输出信号的信噪比;然后,对输出信号进行变分模态自适应分解,选择最能反映行波波头特征的高频模态分量,并利用改进Teager能量算子对高频模态分量波头进行标定;最后,根据输电线路各档距内导线水平长度和实际长度之间的比例关系,推导出一种不受波速影响的双端行波测距公式,利用该测距公式计算故障距离。仿真结果表明,所提波头检测方法在噪声背景下具有良好的检测效果,能够保证定位结果相对误差维持在0.1%以内。 展开更多
关键词 小波阈值函数 变分模态分解 改进Teager能量算子 行波波速 故障定位
在线阅读 下载PDF
基于AVMD与Teager能量算子的风电机组故障诊断方法
16
作者 时培明 伊思颖 +2 位作者 张慧超 范雅斐 韩东颖 《振动.测试与诊断》 北大核心 2025年第2期390-397,418,共9页
为解决变分模态分解(variational mode decomposition,简称VMD)在噪声情况下提取风电机组故障特征时因参数设置的人为经验不足而带来的误差问题及耗费时间的问题,提出一种基于自适应变分模态分解(adaptive variational mode decompositi... 为解决变分模态分解(variational mode decomposition,简称VMD)在噪声情况下提取风电机组故障特征时因参数设置的人为经验不足而带来的误差问题及耗费时间的问题,提出一种基于自适应变分模态分解(adaptive variational mode decomposition,简称AVMD)算法的风电机组故障诊断方法。首先,将包络熵-峭度-互信息准则(envelope entropy,kurtosis and mutual information,简称EKM)作为黏菌算法(slime mold algorithm,简称SMA)的适应度函数来寻找最优解,并按照最优解对故障信号进行分解;其次,计算每个固有模态函数分量(inherent modal function,简称IMF)的峭度和与原信号的互信息,选择具有故障特征的分量进行重构;最后,通过Teager能量算子解调来识别风电机组故障特征频率。仿真信号和实际风电机组故障信号表明,所提方法能够找到故障频率及其倍频,验证了其在风电机组故障诊断领域中的有效性。 展开更多
关键词 自适应变分模态分解 黏菌算法 包络熵-峭度-互信息准则 TEAGER能量算子
在线阅读 下载PDF
基于EEMD-GWO-VMD的滚动轴承故障特征提取
17
作者 张涛 张振彬 谢剑龙 《中国工程机械学报》 北大核心 2025年第3期470-475,共6页
针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,... 针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,以包络熵为目标函数,采用灰狼算法(GWO)优化变分模态分解(VMD)的惩罚因子和模态分解层数,并采用仿真信号对比分析VMD、GWO-VMD和EEMD-GWO-VMD这3种方法的降噪效果。最后,结合CWRU数据集和高速列车轴箱轴承台架试验数据,进一步验证EEMD-GWO-VMD降噪方法的有效性。 展开更多
关键词 滚动轴承 灰狼算法(GWO) 集成经验模态分解(EEMD) 变分模态分解(vmd)
在线阅读 下载PDF
基于VMD-HHT算法的油管输送射孔振动监测研究
18
作者 鲁永辉 柴鹏 +4 位作者 冉增勇 刘帅 霍勇 杨伟 张馨尹 《石油物探》 北大核心 2025年第6期1172-1178,共7页
我国正不断加大非常规和深海油气资源的开发力度,此类油气资源的开采方式多以深井、超深井为主。在套管射孔完井作业过程中,由射孔弹爆炸引起的振动随井深的增加而明显衰减,导致此类井的射孔监测难度增大。提出了一种基于变分模态分解(V... 我国正不断加大非常规和深海油气资源的开发力度,此类油气资源的开采方式多以深井、超深井为主。在套管射孔完井作业过程中,由射孔弹爆炸引起的振动随井深的增加而明显衰减,导致此类井的射孔监测难度增大。提出了一种基于变分模态分解(VMD)的深井油管输送射孔振动监测方法。该方法采用高精度加速度振动传感器与高分辨率采集卡搭建井口振动信号采集系统,实现了对井口振动信号的有效采集。分析了井口振动信号的来源及其频率范围,采集了延长油田某水平井射孔作业时井口的振动信号,并对比了压力起爆油管输送射孔和电缆射孔这两种方式下井口振动信号的时域特征。采用VMD方法将压力起爆油管输送射孔的井口振动信号分解为7个不同频段的本征模态函数,并对各分量进行希尔伯特-黄变换(HHT),识别出了射孔信号和泵车加压信号。应用结果表明,该方法提取的射孔振动信号能够准确反映射孔振动特征,提高深井油管输送射孔振动监测的精度。 展开更多
关键词 变分模态分解 射孔监测 希尔伯特-黄变换 油管输送射孔 射孔枪
在线阅读 下载PDF
基于SSA-VMD-LIESN的短期风电功率预测方法研究
19
作者 杨宁宁 王怡昕 +1 位作者 吴朝俊 马芝瑞 《太阳能学报》 北大核心 2025年第5期440-447,共8页
短期风电功率预测精度提升可增强电力系统调节能力与消纳水平,并为风电优化决策提供数据支撑。为了提高短期风电功率的预测精度,提出一种基于SSA-VMD-LIESN的预测模型。首先通过麻雀搜寻算法(SSA)求解最优的变分模态分解(VMD)参数,将复... 短期风电功率预测精度提升可增强电力系统调节能力与消纳水平,并为风电优化决策提供数据支撑。为了提高短期风电功率的预测精度,提出一种基于SSA-VMD-LIESN的预测模型。首先通过麻雀搜寻算法(SSA)求解最优的变分模态分解(VMD)参数,将复杂的风电功率历史数据分解为不同频率的模态分量。随后通过样本熵计算反映其复杂程度,并将具有相似特征的分量融合重构。最后结合具有良好非线性预测能力的泄漏积分型回声状态网络(LIESN),构成SSA-VMD-LIESN预测模型,并将预测结果与传统LIESN、长短期记忆网络(LSTM)以及BP神经网络进行对比分析。研究结果表明,该模型训练快速,具有较好的短期风电功率预测能力。 展开更多
关键词 风电 预测 变分模态分解 麻雀搜索算法 泄漏积分型回声状态网络
原文传递
基于VMD-Informer的流程工艺质量指标预测模型
20
作者 郑华丽 李志敏 +2 位作者 王明君 闫文凯 叶春明 《制造业自动化》 2025年第5期54-61,共8页
针对制造业流程工艺质量指标数据波动性强、影响因素繁多,使用传统预测模型难以挖掘其隐含规律实现高精度预测的问题,提出了一种基于VMD-Informer的深度学习质量指标预测模型。首先筛选与质量指标相关的流程工艺参数;接着使用变分模态分... 针对制造业流程工艺质量指标数据波动性强、影响因素繁多,使用传统预测模型难以挖掘其隐含规律实现高精度预测的问题,提出了一种基于VMD-Informer的深度学习质量指标预测模型。首先筛选与质量指标相关的流程工艺参数;接着使用变分模态分解(VMD)将质量指标数据集分解为模态分量与误差项;然后筛选与各分量具有相关性的工艺指标作为输入矩阵;最后使用Informer模型对各分量及误差项分别预测并叠加得到最终预测值。选取国内某制造业企业生产数据,对不同质量指标进行预测,并与LSTM模型和改进前的Informer模型的预测效果进行对比。结果表明:所提的VMD-Informer模型预测误差更小、可决系数较大,预测更为精准,可为制造业企业实现质量预测提供有效方法,并为企业及时调整生产方案提供思路。 展开更多
关键词 质量预测 深度学习 INFORMER 变分模态分解(vmd)
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部