期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Anchoring Bolt Detection Based on Morphological Filtering and Variational Modal Decomposition 被引量:1
1
作者 XU Juncai REN Qingwen LEI Bangjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第4期628-634,共7页
The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the va... The pull test is a damaging detection method that fails to measure the actual length of a bolt.Thus,the ultrasonic echo is an important non?destructive testing method for bolt quality detection.In this research,the variational modal decomposition(VMD)method is introduced into the bolt detection signal analysis.On the basis of morphological filtering(MF)and the VMD method,a VMD?combined MF principle is established into a bolt detection signal analysis method(MF?VMD).MF?VMD is used to analyze the vibration and actual bolt detection signals of the simulation.Results show that MF?VMD effectively separates intrinsic mode function,even under strong interference.In comparison with conventional VMD method,the proposed method can remove noise interference.An intrinsic mode function of the field detection signal can be effectively identified by reflecting the signal at the bottom of the bolt. 展开更多
关键词 bolt detection variational modal decomposition morphological filtering intrinsic mode function
在线阅读 下载PDF
Cloud Resource Integrated Prediction Model Based on Variational Modal Decomposition-Permutation Entropy and LSTM
2
作者 Xinfei Li Xiaolan Xie +1 位作者 Yigang Tang Qiang Guo 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2707-2724,共18页
Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking co... Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy. 展开更多
关键词 Cloud resource prediction variational modal decomposition permutation entropy long and short-term neural network stacking integration
在线阅读 下载PDF
Distributed Sea Clutter Denoising Algorithm Based on Variational Mode Decomposition 被引量:10
3
作者 SUN Jiang XING Hongyan WU Jiajia 《Instrumentation》 2020年第3期23-32,共10页
In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal deco... In order to improve the detection accuracy of chaotic small signal prediction models under the background of sea clutter,a distributed sea clutter denoising algorithm is proposed,on the basis of variational modal decomposition(VMD).The sea clutter signal is decomposed into variational modal functions(VMF)with different center bandwidths by means of VMD.By analyzing the autocorrelation characteristics of the deco mposed signal,we perform instantaneous half-period(IHP)and wavelet threshold denoising processing on the high-frequency and low-frequency components respectively,and regain the sea clutter signals.Based on LSSVM sea clutter prediction model,this research compares and analyzes the denoising effects of VMD.Experi ment results show that,the RMSE after denoising is reduced by two orders of magnitude,approximating 0.00034,with an apparently better denoising effect,compared with the root mean square error(RMSE)of the prediction before denoising. 展开更多
关键词 Sea Clutter variational modal decomposition Autocorrelation Properties Instantaneous Half-Period
原文传递
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
4
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Rolling Bearing Fault Diagnosis Based on Cross-Attention Fusion WDCNN and BILSTM
5
作者 Yingyong Zou Xingkui Zhang +3 位作者 Tao Liu Yu Zhang Long Li Wenzhuo Zhao 《Computers, Materials & Continua》 2025年第6期4699-4723,共25页
High-speed train engine rolling bearings play a crucial role in maintaining engine health and minimizing operational losses during train operation.To solve the problems of low accuracy of the diagnostic model and unst... High-speed train engine rolling bearings play a crucial role in maintaining engine health and minimizing operational losses during train operation.To solve the problems of low accuracy of the diagnostic model and unstable model due to the influence of noise during fault detection,a rolling bearing fault diagnosis model based on cross-attention fusion of WDCNN and BILSTM is proposed.The first layer of the wide convolutional kernel deep convolutional neural network(WDCNN)is used to extract the local features of the signal and suppress the highfrequency noise.A Bidirectional Long Short-Term Memory Network(BILSTM)is used to obtain global time series features of the signal.Cross-attention combines the WDCNN layer and the BILSTM layer so that the model can recognize more comprehensive feature information of the signal.Meanwhile,to improve the accuracy,Variable Modal Decomposition(VMD)is used to decompose the signals and filter and reconstruct the signals using envelope entropy and kurtosis,which enables the pre-processing of the signals so that the data input to the neural network contains richer feature information.The feasibility of the model is tested and experimentally validated using publicly available datasets.The experimental results show that the accuracy of themodel proposed in this paper is significantly improved compared to the traditional WDCNN,BILSTM,and WDCNN-BILSTM models. 展开更多
关键词 High-speed train engine rolling bearings fault diagnosis variational modal decomposition WDCNNBILSTM-cross-attention feature fusion
在线阅读 下载PDF
Three-Dimensional Sound Source Location Algorithm for Subsea Leakage Using Hydrophone 被引量:1
6
作者 LI Hao-jie CAI Bao-ping +6 位作者 YUAN Xiao-bing KONG Xiang-di LIU Yong-hong Javed Akbar KHAN CHU Zheng-de YANG Chao TANG An-bang 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期326-337,共12页
Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the mari... Leakages from subsea oil and gas equipment cause substantial economic losses and damage to marine ecosystem,so it is essential to locate the source of the leak.However,due to the complexity and variability of the marine environment,the signals collected by hydrophone contain a variety of noises,which makes it challenging to extract useful signals for localization.To solve this problem,a hydrophone denoising algorithm is proposed based on variational modal decomposition(VMD)with grey wolf optimization.First,the average envelope entropy is used as the fitness function of the grey wolf optimizer to find the optimal solution for the parameters K andα.Afterward,the VMD algorithm decomposes the original signal parameters to obtain the intrinsic mode functions(IMFs).Subsequently,the number of interrelationships between each IMF and the original signal was calculated,the threshold value was set,and the noise signal was removed to calculate the time difference using the valid signal obtained by reconstruction.Finally,the arrival time difference is used to locate the origin of the leak.The localization accuracy of the method in finding leaks is investigated experimentally by constructing a simulated leak test rig,and the effectiveness and feasibility of the method are verified. 展开更多
关键词 grey wolf optimizer variational modal decomposition mean envelope entropy correlation coefficient time difference of arrival
在线阅读 下载PDF
Short-Term Wind Power Prediction Based on Optimized VMD and LSTM
7
作者 Xinjian Li Yu Zhang +1 位作者 Zewen Wang Zhenyun Song 《Energy Engineering》 2025年第11期4603-4619,共17页
Power prediction has been critical in large-scale wind power grid connections.However,traditional wind power prediction methods have long suffered from problems,for instance low prediction accuracy and poor reliabilit... Power prediction has been critical in large-scale wind power grid connections.However,traditional wind power prediction methods have long suffered from problems,for instance low prediction accuracy and poor reliability.For this purpose,a hybrid prediction model(VMD-LSTM-Attention)has been proposed,which integrates the variational modal decomposition(VMD),the long short-term memory(LSTM),and the attention mechanism(Attention),and has been optimized by improved dung beetle optimization algorithm(IDBO).Firstly,the algorithm's performance has been significantly enhanced through the implementation of three key strategies,namely the elite group strategy of the Logistic-Tent map,the nonlinear adjustment factor,and the adaptive T-distribution disturbance mechanism.Subsequently,IDBO has been applied to optimize the important parameters of VMD(decomposition layers and penalty factors)to ensure the best decomposition signal is obtained;Furthermore,the IDBO has been deployed to optimize the three key hyper-parameters of the LSTM,thereby improving its learning capability.Finally,an Attention mechanism has been incorporated to adaptively weight temporal features,thus increasing the model's ability to focus on key information.Comprehensive simulation experiments have demonstrated that the proposed model achieves higher prediction accuracy compared with VMD-LSTM,VMD-LSTM-Attention,and traditional prediction methods,and quantitative indexes verify the efectiveness of the algorithmic improvement as well as the excellence and precision of the model in wind power prediction. 展开更多
关键词 variational modal decomposition attention mechanism dung beetle optimization algorithm long short-term memory network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部