期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
Dynamic behavior recognition in aerial deployment of multi-segmented foldable-wing drones using variational autoencoders
1
作者 Yilin DOU Zhou ZHOU Rui WANG 《Chinese Journal of Aeronautics》 2025年第6期143-165,共23页
The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,wi... The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies. 展开更多
关键词 Dynamic behavior recognition Aerial deployment technology variational autoencoder Pattern recognition Multi-rigid-bodydynamics
原文传递
Spatially Constrained Variational Autoencoder for Geochemical Data Denoising and Uncertainty Quantification
2
作者 Dazheng Huang Renguang Zuo +1 位作者 Jian Wang Raimon Tolosana-Delgado 《Journal of Earth Science》 2025年第5期2317-2336,共20页
Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying... Geochemical survey data are essential across Earth Science disciplines but are often affected by noise,which can obscure important geological signals and compromise subsequent prediction and interpretation.Quantifying prediction uncertainty is hence crucial for robust geoscientific decision-making.This study proposes a novel deep learning framework,the Spatially Constrained Variational Autoencoder(SC-VAE),for denoising geochemical survey data with integrated uncertainty quantification.The SC-VAE incorporates spatial regularization,which enforces spatial coherence by modeling inter-sample relationships directly within the latent space.The performance of the SC-VAE was systematically evaluated against a standard Variational Autoencoder(VAE)using geochemical data from the gold polymetallic district in the northwestern part of Sichuan Province,China.Both models were optimized using Bayesian optimization,with objective functions specifically designed to maintain essential geostatistical characteristics.Evaluation metrics include variogram analysis,quantitative measures of spatial interpolation accuracy,visual assessment of denoised maps,and statistical analysis of data distributions,as well as decomposition of uncertainties.Results show that the SC-VAE achieves superior noise suppression and better preservation of spatial structure compared to the standard VAE,as demonstrated by a significant reduction in the variogram nugget effect and an increased partial sill.The SC-VAE produces denoised maps with clearer anomaly delineation and more regularized data distributions,effectively mitigating outliers and reducing kurtosis.Additionally,it delivers improved interpolation accuracy and spatially explicit uncertainty estimates,facilitating more reliable and interpretable assessments of prediction confidence.The SC-VAE framework thus provides a robust,geostatistically informed solution for enhancing the quality and interpretability of geochemical data,with broad applicability in mineral exploration,environmental geochemistry,and other Earth Science domains. 展开更多
关键词 geochemical data denoising spatially constrained variational autoencoder GEOSTATISTICS bayesian optimization uncertainty analysis GEOCHEMISTRY
原文传递
Wavelet Transform-Based Bayesian Inference Learning with Conditional Variational Autoencoder for Mitigating Injection Attack in 6G Edge Network
3
作者 Binu Sudhakaran Pillai Raghavendra Kulkarni +1 位作者 Venkata Satya Suresh kumar Kondeti Surendran Rajendran 《Computer Modeling in Engineering & Sciences》 2025年第10期1141-1166,共26页
Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies... Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies. 展开更多
关键词 Bayesian inference learning automaton convolutional wavelet transform conditional variational autoencoder malicious data injection attack edge environment 6G communication
在线阅读 下载PDF
基于VAE与TabNet的电气化铁路接触网故障识别方法研究 被引量:1
4
作者 刘家军 马馨秀 汪洪亮 《电力电容器与无功补偿》 2025年第4期81-87,共7页
接触网承担着向沿线电力机车输送电能的重要任务,一旦发生故障会直接影响列车安全运行,因此研究接触网故障识别方法十分必要。本文提出了一种基于VAE与TabNet的故障识别方法,首先采用ANSYSWorkbench软件建立弓网耦合模型,获取不同故障... 接触网承担着向沿线电力机车输送电能的重要任务,一旦发生故障会直接影响列车安全运行,因此研究接触网故障识别方法十分必要。本文提出了一种基于VAE与TabNet的故障识别方法,首先采用ANSYSWorkbench软件建立弓网耦合模型,获取不同故障下的弓网接触力变化;其次利用变分自编码器算法扩充故障仿真数据,提升模型的泛化能力;最后通过TabNet模型进行故障类型的识别,识别准确率达到96%,并与其他传统分类算法对比。实验结果表明,所提方法在接触网故障识别方面表现出了优越的性能。 展开更多
关键词 接触网 故障识别 弓网耦合模型 TabNet 变分自编码器
在线阅读 下载PDF
基于RGCVAE的测井曲线重构方法
5
作者 韩建 陈着 +2 位作者 王业统 曹志民 邓宇 《工业仪表与自动化装置》 2025年第5期87-91,共5页
在实际测井过程中,测井曲线的质量常常受到仪器故障和环境因素的影响,导致测井数据出现缺失。该文提出了一种基于RGCVAE的测井曲线重构方法,并结合大庆油田古工业区和金工业区的实际测井数据,分别进行了同井间和异井间的缺失数据重构实... 在实际测井过程中,测井曲线的质量常常受到仪器故障和环境因素的影响,导致测井数据出现缺失。该文提出了一种基于RGCVAE的测井曲线重构方法,并结合大庆油田古工业区和金工业区的实际测井数据,分别进行了同井间和异井间的缺失数据重构实验。通过与随机森林、RNN和LSTM网络的实验结果进行对比分析,结果表明,RGCVAE模型在预测精度方面表现较好。在同井实验中,两口井重构后的声波时差曲线原始曲线的相关性分别达到了90.94%和88.60%;在异井实验中,两口井重构后的声波时差曲线与原始曲线的相关性分别为87.85%和85.71%。 展开更多
关键词 循环格兰杰变分编码器 测井曲线 重构方法 声波时差曲线
在线阅读 下载PDF
Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition 被引量:6
6
作者 Yixin Wang Shuang Qiu +3 位作者 Dan Li Changde Du Bao-Liang Lu Huiguang He 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第9期1612-1626,共15页
Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer i... Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer interface(BCI)in practice.We attempt to use the multi-modal data from the past session to realize emotion recognition in the case of a small amount of calibration samples.To solve this problem,we propose a multimodal domain adaptive variational autoencoder(MMDA-VAE)method,which learns shared cross-domain latent representations of the multi-modal data.Our method builds a multi-modal variational autoencoder(MVAE)to project the data of multiple modalities into a common space.Through adversarial learning and cycle-consistency regularization,our method can reduce the distribution difference of each domain on the shared latent representation layer and realize the transfer of knowledge.Extensive experiments are conducted on two public datasets,SEED and SEED-IV,and the results show the superiority of our proposed method.Our work can effectively improve the performance of emotion recognition with a small amount of labelled multi-modal data. 展开更多
关键词 Cycle-consistency domain adaptation electroencephalograph(EEG) multi modality variational autoencoder
在线阅读 下载PDF
An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination 被引量:4
7
作者 Hakan Gunduz 《Financial Innovation》 2021年第1期585-608,共24页
In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different f... In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different feature sets and their performances were evaluated in terms of accuracy and F-measure metrics.While the first experiments directly used the own stock features as the model inputs,the second experiments utilized reduced stock features through Variational AutoEncoders(VAE).In the last experiments,in order to grasp the effects of the other banking stocks on individual stock performance,the features belonging to other stocks were also given as inputs to our models.While combining other stock features was done for both own(named as allstock_own)and VAE-reduced(named as allstock_VAE)stock features,the expanded dimensions of the feature sets were reduced by Recursive Feature Elimination.As the highest success rate increased up to 0.685 with allstock_own and LSTM with attention model,the combination of allstock_VAE and LSTM with the attention model obtained an accuracy rate of 0.675.Although the classification results achieved with both feature types was close,allstock_VAE achieved these results using nearly 16.67%less features compared to allstock_own.When all experimental results were examined,it was found out that the models trained with allstock_own and allstock_VAE achieved higher accuracy rates than those using individual stock features.It was also concluded that the results obtained with the VAE-reduced stock features were similar to those obtained by own stock features. 展开更多
关键词 Stock market prediction variational autoencoder Recursive feature elimination Long-short term memory Borsa Istanbul LightGBM
在线阅读 下载PDF
用于电类实验测量数据异常检测的MVAE神经网络 被引量:3
8
作者 申赞伟 刘彦博 +3 位作者 杨柳 曹淋涵 熊英杰 张峰 《实验室研究与探索》 北大核心 2025年第1期24-29,共6页
电类实验课中测量数据对错的人工评判降低了课堂教学的效率和质量。为此,提出一种改进变分自编码器(MVAE)神经网络,利用均值漂移方法得到实验测量数据的隐变量均值;以实验测量数据的训练集样本为输入,基于反向传播算法对MVAE参数进行训... 电类实验课中测量数据对错的人工评判降低了课堂教学的效率和质量。为此,提出一种改进变分自编码器(MVAE)神经网络,利用均值漂移方法得到实验测量数据的隐变量均值;以实验测量数据的训练集样本为输入,基于反向传播算法对MVAE参数进行训练,得到实验测量数据的隐变量标准差和隐变量的正态分布。若待判决的测试样本编码后的数据位于隐变量正态分布的2个标准差范围外,则该样本为异常数据,即错误测量数据。研究结果表明,MVAE模型不仅提高了学习效率,而且提高了异常检测判别的准确率。 展开更多
关键词 电类实验课程 变分自编码器 神经网络 异常检测
在线阅读 下载PDF
Generate Faces Using Ladder Variational Autoencoder with Maximum Mean Discrepancy (MMD) 被引量:1
9
作者 Haoji Xu 《Intelligent Information Management》 2018年第4期108-113,共6页
Generative Models have been shown to be extremely useful in learning features from unlabeled data. In particular, variational autoencoders are capable of modeling highly complex natural distributions such as images, w... Generative Models have been shown to be extremely useful in learning features from unlabeled data. In particular, variational autoencoders are capable of modeling highly complex natural distributions such as images, while extracting natural and human-understandable features without labels. In this paper we combine two highly useful classes of models, variational ladder autoencoders, and MMD variational autoencoders, to model face images. In particular, we show that we can disentangle highly meaningful and interpretable features. Furthermore, we are able to perform arithmetic operations on faces and modify faces to add or remove high level features. 展开更多
关键词 GENERATIVE Models LADDER variational autoencoders FACIAL Recognition
暂未订购
Enhancing the Effectiveness of Trimethylchlorosilane Purification Process Monitoring with Variational Autoencoder 被引量:1
10
作者 Jinfu Wang Shunyi Zhao +1 位作者 Fei Liu Zhenyi Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期531-552,共22页
In modern industry,process monitoring plays a significant role in improving the quality of process conduct.With the higher dimensional of the industrial data,the monitoring methods based on the latent variables have b... In modern industry,process monitoring plays a significant role in improving the quality of process conduct.With the higher dimensional of the industrial data,the monitoring methods based on the latent variables have been widely applied in order to decrease the wasting of the industrial database.Nevertheless,these latent variables do not usually follow the Gaussian distribution and thus perform unsuitable when applying some statistics indices,especially the T^(2) on them.Variational AutoEncoders(VAE),an unsupervised deep learning algorithm using the hierarchy study method,has the ability to make the latent variables follow the Gaussian distribution.The partial least squares(PLS)are used to obtain the information between the dependent variables and independent variables.In this paper,we will integrate these two methods and make a comparison with other methods.The superiority of this proposed method will be verified by the simulation and the Trimethylchlorosilane purification process in terms of the multivariate control charts. 展开更多
关键词 Process monitoring variational autoencoders partial least square multivariate control chart
在线阅读 下载PDF
退化趋势平滑约束下基于BLSTM-VAE的剩余寿命预测方法 被引量:1
11
作者 王旋 石章松 +2 位作者 佘博 孙世岩 秦奋起 《兵工学报》 北大核心 2025年第5期35-47,共13页
剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长... 剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长短时记忆网络-变分自编码器(Bidirectional Long Short Term-Memory-Variational Auto Encoder, BLSTM-VAE)的RUL预测方法。该方法首先进行数据预处理,包括数据降噪、滑动窗口分段和标签修正等步骤。然后设计基于BLSTM的VAE型特征提取器,以有效提取时间序列数据中的非线性关系和长距离依赖关系。最后提出一种基于流形学习的退化趋势平滑约束模块,通过局部不变性假设来增强模型的稳健性和泛化能力。通过航空发动机数据集数据集进行验证,结果表明所提出的RUL预测方法在数据集上的表现优于现有的多种RUL预测方法,具有更低的预测误差和更高的稳定性。 展开更多
关键词 剩余寿命预测 双向长短时记忆网络 变分自编码器 平滑性约束 流形学习
在线阅读 下载PDF
基于VAE与API行为特征抽取的恶意软件检测 被引量:1
12
作者 于孟洋 师智斌 +1 位作者 郝伟泽 张舒娟 《计算机工程与设计》 北大核心 2025年第2期464-471,共8页
针对现有检测方法缺乏数据连续性和完整性的建模能力、难以提取API调用序列的全局特征,且对API行为语义表示抽取单一等问题,提出一种基于变分自编码器与API行为特征抽取的恶意软件检测方法。通过词嵌入将调用函数表示为语义稠密向量;基... 针对现有检测方法缺乏数据连续性和完整性的建模能力、难以提取API调用序列的全局特征,且对API行为语义表示抽取单一等问题,提出一种基于变分自编码器与API行为特征抽取的恶意软件检测方法。通过词嵌入将调用函数表示为语义稠密向量;基于变分自编码器架构,学习数据的潜在状态表示,完成对恶意软件全局特征和模式的提取;采用多层卷积神经网络,抽取不同粒度调用子序列的行为语义特征,同时统计调用频率,获取API使用权重信息;综合上述特征进行恶意软件检测。实验结果表明,该方法在阿里云数据集上达到了97.81%的良/恶性检测精度和93.74%的多分类精度,验证了方法的有效性。 展开更多
关键词 恶意软件检测 变分自编码器 多层卷积神经网络 序列信息 行为语义 频率信息 特征融合
在线阅读 下载PDF
基于VQ-VAE的船用设备轴承故障诊断模型 被引量:1
13
作者 刘建男 车驰东 《船舶工程》 北大核心 2025年第6期53-62,共10页
[目的]针对轴承故障诊断中样本不充分、分布不均衡的问题,提出一种基于向量量化自编码器(VQ-VAE)的轴承故障诊断模型。[方法]利用VQ-VAE将轴承振动时频图压缩得到离散特征空间,并通过像素卷积神经网络(PixelCNN)采样得到全新的故障样本... [目的]针对轴承故障诊断中样本不充分、分布不均衡的问题,提出一种基于向量量化自编码器(VQ-VAE)的轴承故障诊断模型。[方法]利用VQ-VAE将轴承振动时频图压缩得到离散特征空间,并通过像素卷积神经网络(PixelCNN)采样得到全新的故障样本用于扩充、平衡轴承故障数据集。在经典轴承故障数据集进行样本生成试验,并在不同负载的轴承振动数据集上进行跨工况故障诊断迁移学习。[结果]通过生成和诊断结果的对比分析证明,提出的方法能够生成高质量的轴承故障样本对数据集进行扩充,并且能够通过迁移学习在跨工况的故障诊断中取得较高的准确率。[结论]研究结果为船用设备轴承故障诊断方法提供参考。 展开更多
关键词 故障诊断 向量量化自编码器 迁移学习 跨工况
原文传递
Seismic labeled data expansion using variational autoencoders 被引量:2
14
作者 Kunhong Li Song Chen +1 位作者 Guangmin Hu Ph.D 《Artificial Intelligence in Geosciences》 2020年第1期24-30,共7页
Supervised machine learning algorithms have been widely used in seismic exploration processing,but the lack of labeled examples complicates its application.Therefore,we propose a seismic labeled data expansion method ... Supervised machine learning algorithms have been widely used in seismic exploration processing,but the lack of labeled examples complicates its application.Therefore,we propose a seismic labeled data expansion method based on deep variational Autoencoders(VAE),which are made of neural networks and contains two partsEncoder and Decoder.Lack of training samples leads to overfitting of the network.We training the VAE with whole seismic data,which is a data-driven process and greatly alleviates the risk of overfitting.The Encoder captures the ability to map the seismic waveform Y to latent deep features z,and the Decoder captures the ability to reconstruct high-dimensional waveform Yb from latent deep features z.Later,we put the labeled seismic data into Encoders and get the latent deep features.We can easily use gaussian mixture model to fit the deep feature distribution of each class labeled data.We resample a mass of expansion deep features z* according to the Gaussian mixture model,and put the expansion deep features into the decoder to generate expansion seismic data.The experiments in synthetic and real data show that our method alleviates the problem of lacking labeled seismic data for supervised seismic facies analysis. 展开更多
关键词 Deep learning variational autoencoders Data expansion
在线阅读 下载PDF
基于VAE-BiGRU-Attention模型的储层孔隙度预测——以中-低渗砂岩储层为例 被引量:3
15
作者 曾滨鑫 肖晖 +1 位作者 郝子眉 刘欢欢 《地球物理学进展》 北大核心 2025年第2期658-669,共12页
孔隙度是储层评价中不可或缺的关键物性参数,而测井曲线与其之间存在复杂且潜在的关联.以往研究中,测井曲线特征提取的不完整和模型构建较为简单,导致孔隙度预测精度受限.为提升预测精度,本文创新性地结合了变分自编码器(Variational Au... 孔隙度是储层评价中不可或缺的关键物性参数,而测井曲线与其之间存在复杂且潜在的关联.以往研究中,测井曲线特征提取的不完整和模型构建较为简单,导致孔隙度预测精度受限.为提升预测精度,本文创新性地结合了变分自编码器(Variational Auto-Encoders,VAE)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和注意力(Attention)机制,构建了VAE-BiGRU-Attention模型.VAE能有效学习数据的潜在表示,提升数据表征能力;BiGRU擅长捕捉序列数据信息,特别适合处理孔隙度随深度变化的特征;而Attention机制的引入动态计算了每个时间步的注意力权重,从而更精准地聚焦关键特征使模型达到更好的预测效果.为验证模型的有效性,本文将其与深度神经网络(Deep Neural Network,DNN)、循环神经网络(Recurrent Neural Network,RNN)以及BiGRU-Attention进行了对比实验.结果显示,VAE-BiGRUAttention模型的均方误差(Mean Squared Error,MSE)、平均绝对误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Squared Error,RMSE)分别为0.995、0.698和0.998,相较于其他模型,表现出显著的进步,有效提升了孔隙度预测的精度,为储层孔隙度预测提供了更为可靠的方法. 展开更多
关键词 孔隙度 储层评价 测井曲线 变分自编码器 双向门控循环单元 vae-BiGRU-Attention模型
原文传递
Facial landmark disentangled network with variational autoencoder
16
作者 LIANG Sen ZHOU Zhi-ze +3 位作者 GUO Yu-dong GAO Xuan ZHANG Ju-yong BAO Hu-jun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第2期290-305,共16页
Learning disentangled representation of data is a key problem in deep learning.Specifically,disentangling 2D facial landmarks into different factors(e.g.,identity and expression)is widely used in the applications of f... Learning disentangled representation of data is a key problem in deep learning.Specifically,disentangling 2D facial landmarks into different factors(e.g.,identity and expression)is widely used in the applications of face reconstruction,face reenactment and talking head et al..However,due to the sparsity of landmarks and the lack of accurate labels for the factors,it is hard to learn the disentangled representation of landmarks.To address these problem,we propose a simple and effective model named FLD-VAE to disentangle arbitrary facial landmarks into identity and expression latent representations,which is based on a Variational Autoencoder framework.Besides,we propose three invariant loss functions in both latent and data levels to constrain the invariance of representations during training stage.Moreover,we implement an identity preservation loss to further enhance the representation ability of identity factor.To the best of our knowledge,this is the first work to end-to-end disentangle identity and expression factors simultaneously from one single facial landmark. 展开更多
关键词 disentanglement representation deep learning facial landmarks variational autoencoder
在线阅读 下载PDF
基于VAE-EGAN架构的地震脉冲干扰异常检测
17
作者 严英殊 余贞侠 +2 位作者 文晓涛 王秋成 文武 《西安石油大学学报(自然科学版)》 北大核心 2025年第3期1-11,共11页
在地震勘探采集现场,脉冲信号作为一种干扰,严重影响地震采集记录的品质,是地震采集现场重点监控的干扰对象。为准确检测脉冲信号,减少地震脉冲信号对后续地震数据处理和解释的影响,提出一种基于VAE-EGAN架构的异常检测方法。该方法结... 在地震勘探采集现场,脉冲信号作为一种干扰,严重影响地震采集记录的品质,是地震采集现场重点监控的干扰对象。为准确检测脉冲信号,减少地震脉冲信号对后续地震数据处理和解释的影响,提出一种基于VAE-EGAN架构的异常检测方法。该方法结合变分自编码器VAE的生成稳定性与生成对抗网络GAN的判别能力,通过权值衰减和谱归一化技术降低模型过拟合的可能。新设计的损失函数结合多个判别器的独特结构,提高了GAN在异常捕捉任务上的竞争力。西部某工区实际地震数据的实验结果表明,该方法的异常检测准确率和F1值分别达到93.75%和96.77%,异常定位准确率和F1值分别达到89.82%和92.73%。实验结果验证了该方法在提升脉冲信号异常检测精度方面的有效性,降低了地震数据处理中脉冲信号检测的复杂性,有助于保障地震数据的准确性。 展开更多
关键词 地震脉冲 异常检测 生成对抗网络 变分自编码器
在线阅读 下载PDF
基于CVAE数据增强的变压器故障诊断 被引量:1
18
作者 韦华新 高雪莲 《河北师范大学学报(自然科学版)》 2025年第4期362-369,共8页
为提升变压器故障诊断的精度,提出了一种基于条件变分自编码器(CVAE)的变压器故障数据增强方法.首先,通过实际样本对CVAE进行有监督的训练,该网络可以充分利用数据的标签信息生成具有多样性的样本,能减少样本扩充导致的过拟合现象.其次... 为提升变压器故障诊断的精度,提出了一种基于条件变分自编码器(CVAE)的变压器故障数据增强方法.首先,通过实际样本对CVAE进行有监督的训练,该网络可以充分利用数据的标签信息生成具有多样性的样本,能减少样本扩充导致的过拟合现象.其次,利用训练好的CVAE生成新的少数类样本,使数据集各类别样本数量达到平衡.最后,将增强后的故障数据作为输入对分类器进行训练,并测试训练好的分类器性能.实验结果表明,CVAE能兼顾数据的整体分布特性和新样本的多样性,增强后的变压器故障数据对不同分类器的性能都有较好的提升效果;并且在保证各类别样本数量平衡的前提下,继续增加新的样本还能使分类器的性能得到更进一步的提升. 展开更多
关键词 数据增强 条件变分自编码器 变压器故障诊断 数据不平衡
在线阅读 下载PDF
基于改进MAML与GVAE的容量约束车辆路径问题求解方法
19
作者 张焱鹏 赵于前 +3 位作者 张帆 丘腾海 桂瑰 余伶俐 《计算机应用》 北大核心 2025年第11期3642-3648,共7页
基于深度强化学习(DRL)的车辆路径规划方法以其求解速度快、端到端等优势受到广泛关注,但现有方法大多局限于对节点分布均匀和数量固定问题的求解,当面临节点不平均分布以及节点数变化的情况时,求解效果有所下降。针对这一问题,提出一... 基于深度强化学习(DRL)的车辆路径规划方法以其求解速度快、端到端等优势受到广泛关注,但现有方法大多局限于对节点分布均匀和数量固定问题的求解,当面临节点不平均分布以及节点数变化的情况时,求解效果有所下降。针对这一问题,提出一种基于改进模型无关的元学习(MAML)和图变分自编码器(GVAE)的元学习框架,旨在通过元训练得到一个良好的初始化模型,并针对数据集外分布的任务进行快速微调,从而提升模型的泛化性能;此外利用GVAE初始化元学习框架的参数,以进一步提升元学习效果。实验结果表明,所提方法可以较好地处理不同节点分布情况下的车辆路径问题(VRP),在面对不同节点数量问题时也有较好的表现,在5种任务上的平均偏差率较未使用元学习的方法降低了0.45个百分点。利用元学习框架可有效提升强化学习的效果,与先进求解器相比,所提框架在保证成本接近的前提下可有效缩短求解时间。 展开更多
关键词 车辆路径问题 深度强化学习 元学习 图变分自编码器 组合优化 策略梯度方法
在线阅读 下载PDF
基于高阶拓扑持续图像VAE-GAN的精分患者预测研究
20
作者 尹梦真 阴桂梅 +6 位作者 陈思 师冬丽 王琳 张曼洁 董源 谭淑平 王彬 《太原师范学院学报(自然科学版)》 2025年第2期18-23,共6页
目前基于深度学习的精神分裂症脑网络的研究,大多忽略了高阶脑功能网络对精神分裂症的影响和存在获取的样本量较少的问题,为了解决这些问题,提出一种基于高阶拓扑持续图像变分自编码器生成对抗网络预测模型,该模型结合了VAE和GAN的优点... 目前基于深度学习的精神分裂症脑网络的研究,大多忽略了高阶脑功能网络对精神分裂症的影响和存在获取的样本量较少的问题,为了解决这些问题,提出一种基于高阶拓扑持续图像变分自编码器生成对抗网络预测模型,该模型结合了VAE和GAN的优点,生成高质量的样本并有效捕捉数据的潜在分布,提取数据的高阶拓扑特征,在高维空间中捕捉信号的复杂结构.其中VAE对高阶拓扑持续图像的分布进行建模,GAN中采用GAT和LSTM结合捕捉空间特征和时间特征.在103例精分患者和92例健康被试的精神分裂症数据集上进行实验,结果表明,与现有模型相比,所提出的模型在识别时空特征和功能脑网络方面表现优秀.在精神分裂症脑电信号的五个频段分析中,Gamma频段和Theta频段模型的高阶特征性能最佳,准确率分别达到96.1%和95.7%,均优于所选的对比方法.为精神分裂症的早期诊断和预测提供了一种新的研究思路,具有重要的临床参考价值. 展开更多
关键词 变分自编码器 生成对抗网络 精神分裂症 拓扑数据分析 持续图像
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部