期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
1
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 Wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
A stochastic gradient-based two-step sparse identification algorithm for multivariate ARX systems
2
作者 Yanxin Fu Wenxiao Zhao 《Control Theory and Technology》 EI CSCD 2024年第2期213-221,共9页
We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (... We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (SG) algorithm is applied to obtain initial estimates of the unknown parameter matrix and in the second step an optimization criterion is introduced for the sparse identification of multivariate ARX systems. Under mild conditions, we prove that by minimizing the criterion function, the zero elements of the unknown parameter matrix can be recovered with a finite number of observations. The performance of the algorithm is testified through a simulation example. 展开更多
关键词 ARX system stochastic gradient algorithm Sparse identification Support recovery Parameter estimation Strong consistency
原文传递
Efficient and High-quality Recommendations via Momentum-incorporated Parallel Stochastic Gradient Descent-Based Learning 被引量:7
3
作者 Xin Luo Wen Qin +2 位作者 Ani Dong Khaled Sedraoui MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期402-411,共10页
A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and... A recommender system(RS)relying on latent factor analysis usually adopts stochastic gradient descent(SGD)as its learning algorithm.However,owing to its serial mechanism,an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems.Aiming at addressing this issue,this study proposes a momentum-incorporated parallel stochastic gradient descent(MPSGD)algorithm,whose main idea is two-fold:a)implementing parallelization via a novel datasplitting strategy,and b)accelerating convergence rate by integrating momentum effects into its training process.With it,an MPSGD-based latent factor(MLF)model is achieved,which is capable of performing efficient and high-quality recommendations.Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm,an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability. 展开更多
关键词 Big data industrial application industrial data latent factor analysis machine learning parallel algorithm recommender system(RS) stochastic gradient descent(SGD)
在线阅读 下载PDF
CONVERGENCE OF ONLINE GRADIENT METHOD WITH A PENALTY TERM FOR FEEDFORWARD NEURAL NETWORKS WITH STOCHASTIC INPUTS 被引量:3
4
作者 邵红梅 吴微 李峰 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2005年第1期87-96,共10页
Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, a... Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaranteed. We also present a numerical experiment to support our results. 展开更多
关键词 前馈神经网络系统 收敛 随机变量 单调性 有界性原理 在线梯度计算法
在线阅读 下载PDF
Auxiliary Model Based Multi-innovation Stochastic Gradient Identification Methods for Hammerstein Output-Error System
5
作者 冯启亮 贾立 李峰 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期53-59,共7页
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea... Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method. 展开更多
关键词 Hammerstein output-error system special input signals auxiliary model based multi-innovation stochastic gradient algorithm innovation length
在线阅读 下载PDF
A Hybrid Conjugate Gradient Algorithm for Solving Relative Orientation of Big Rotation Angle Stereo Pair 被引量:4
6
作者 Jiatian LI Congcong WANG +5 位作者 Chenglin JIA Yiru NIU Yu WANG Wenjing ZHANG Huajing WU Jian LI 《Journal of Geodesy and Geoinformation Science》 2020年第2期62-70,共9页
The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochast... The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations. 展开更多
关键词 relative orientation big rotation angle global convergence stochastic hill climbing conjugate gradient algorithm
在线阅读 下载PDF
A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization 被引量:7
7
作者 Xinlei Yi Shengjun Zhang +2 位作者 Tao Yang Tianyou Chai Karl Henrik Johansson 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第5期812-833,共22页
The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of... The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchange is considered.This problem is an important component of many machine learning techniques with data parallelism,such as deep learning and federated learning.We propose a distributed primal-dual stochastic gradient descent(SGD)algorithm,suitable for arbitrarily connected communication networks and any smooth(possibly nonconvex)cost functions.We show that the proposed algorithm achieves the linear speedup convergence rate O(1/(√nT))for general nonconvex cost functions and the linear speedup convergence rate O(1/(nT)) when the global cost function satisfies the Polyak-Lojasiewicz(P-L)condition,where T is the total number of iterations.We also show that the output of the proposed algorithm with constant parameters linearly converges to a neighborhood of a global optimum.We demonstrate through numerical experiments the efficiency of our algorithm in comparison with the baseline centralized SGD and recently proposed distributed SGD algorithms. 展开更多
关键词 Distributed nonconvex optimization linear speedup Polyak-Lojasiewicz(P-L)condition primal-dual algorithm stochastic gradient descent
在线阅读 下载PDF
A Mini-Batch Proximal Stochastic Recursive Gradient Algorithm with Diagonal Barzilai–Borwein Stepsize 被引量:2
8
作者 Teng-Teng Yu Xin-Wei Liu +1 位作者 Yu-Hong Dai Jie Sun 《Journal of the Operations Research Society of China》 EI CSCD 2023年第2期277-307,共31页
Many machine learning problems can be formulated as minimizing the sum of a function and a non-smooth regularization term.Proximal stochastic gradient methods are popular for solving such composite optimization proble... Many machine learning problems can be formulated as minimizing the sum of a function and a non-smooth regularization term.Proximal stochastic gradient methods are popular for solving such composite optimization problems.We propose a minibatch proximal stochastic recursive gradient algorithm SRG-DBB,which incorporates the diagonal Barzilai–Borwein(DBB)stepsize strategy to capture the local geometry of the problem.The linear convergence and complexity of SRG-DBB are analyzed for strongly convex functions.We further establish the linear convergence of SRGDBB under the non-strong convexity condition.Moreover,it is proved that SRG-DBB converges sublinearly in the convex case.Numerical experiments on standard data sets indicate that the performance of SRG-DBB is better than or comparable to the proximal stochastic recursive gradient algorithm with best-tuned scalar stepsizes or BB stepsizes.Furthermore,SRG-DBB is superior to some advanced mini-batch proximal stochastic gradient methods. 展开更多
关键词 stochastic recursive gradient Proximal gradient algorithm Barzilai-Borwein method Composite optimization
原文传递
Multi-channel blind deconvolution algorithm for multiple-input multiple-output DS/CDMA system
9
作者 Cheng Hao Guo Wei Jiang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期454-461,共8页
Direct sequence spread spectrum transmission can be realized at low SNR, and has low probabilityof detection. It is aly problem how to obtain the original users' signal in a non-cooperative context. In practicality, ... Direct sequence spread spectrum transmission can be realized at low SNR, and has low probabilityof detection. It is aly problem how to obtain the original users' signal in a non-cooperative context. In practicality, the DS/CDMA sources received are linear convolute mixing. A more complex multichannel blind deconvolution MBD algorithm is required to achieve better source separation. An improved MBD algorithm for separating linear convolved mixtures of signals in CDMA system is proposed. This algorithm is based on minimizing the average squared cross-output-channel-correlation. The mixture coefficients are totally unknown, while some knowledge about temporal model exists. Results show that the proposed algorithm can bring about the exactness and low computational complexity. 展开更多
关键词 DS/CDMA signal NON-COOPERATIVE MBD stochastic gradient algorithms for MBD.
在线阅读 下载PDF
A distributed stochastic optimization algorithm with gradient-tracking and distributed heavy-ball acceleration
10
作者 Bihao SUN Jinhui HU +1 位作者 Dawen XIA Huaqing LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第11期1463-1476,共14页
Distributed optimization has been well developed in recent years due to its wide applications in machine learning and signal processing.In this paper,we focus on investigating distributed optimization to minimize a gl... Distributed optimization has been well developed in recent years due to its wide applications in machine learning and signal processing.In this paper,we focus on investigating distributed optimization to minimize a global objective.The objective is a sum of smooth and strongly convex local cost functions which are distributed over an undirected network of n nodes.In contrast to existing works,we apply a distributed heavy-ball term to improve the convergence performance of the proposed algorithm.To accelerate the convergence of existing distributed stochastic first-order gradient methods,a momentum term is combined with a gradient-tracking technique.It is shown that the proposed algorithm has better acceleration ability than GT-SAGA without increasing the complexity.Extensive experiments on real-world datasets verify the effectiveness and correctness of the proposed algorithm. 展开更多
关键词 Distributed optimization High-performance algorithm Multi-agent system Machine-learning problem stochastic gradient
原文传递
Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification
11
作者 Firas Abedi Hayder M.A.Ghanimi +6 位作者 Abeer D.Algarni Naglaa F.Soliman Walid El-Shafai Ali Hashim Abbas Zahraa H.Kareem Hussein Muhi Hariz Ahmed Alkhayyat 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2791-2814,共24页
Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discoveri... Datamining plays a crucial role in extractingmeaningful knowledge fromlarge-scale data repositories,such as data warehouses and databases.Association rule mining,a fundamental process in data mining,involves discovering correlations,patterns,and causal structures within datasets.In the healthcare domain,association rules offer valuable opportunities for building knowledge bases,enabling intelligent diagnoses,and extracting invaluable information rapidly.This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System(MLARMC-HDMS).The MLARMC-HDMS technique integrates classification and association rule mining(ARM)processes.Initially,the chimp optimization algorithm-based feature selection(COAFS)technique is employed within MLARMC-HDMS to select relevant attributes.Inspired by the foraging behavior of chimpanzees,the COA algorithm mimics their search strategy for food.Subsequently,the classification process utilizes stochastic gradient descent with a multilayer perceptron(SGD-MLP)model,while the Apriori algorithm determines attribute relationships.We propose a COA-based feature selection approach for medical data classification using machine learning techniques.This approach involves selecting pertinent features from medical datasets through COA and training machine learning models using the reduced feature set.We evaluate the performance of our approach on various medical datasets employing diverse machine learning classifiers.Experimental results demonstrate that our proposed approach surpasses alternative feature selection methods,achieving higher accuracy and precision rates in medical data classification tasks.The study showcases the effectiveness and efficiency of the COA-based feature selection approach in identifying relevant features,thereby enhancing the diagnosis and treatment of various diseases.To provide further validation,we conduct detailed experiments on a benchmark medical dataset,revealing the superiority of the MLARMCHDMS model over other methods,with a maximum accuracy of 99.75%.Therefore,this research contributes to the advancement of feature selection techniques in medical data classification and highlights the potential for improving healthcare outcomes through accurate and efficient data analysis.The presented MLARMC-HDMS framework and COA-based feature selection approach offer valuable insights for researchers and practitioners working in the field of healthcare data mining and machine learning. 展开更多
关键词 Association rule mining data classification healthcare data machine learning parameter tuning data mining feature selection MLARMC-HDMS COA stochastic gradient descent Apriori algorithm
在线阅读 下载PDF
求解多核学习的自适应随机递归梯度下降法 被引量:1
12
作者 王梅 任怡果 +1 位作者 刘勇 王志宝 《计算机技术与发展》 2025年第7期93-99,共7页
针对随机递归梯度法(SARAH)求解多核学习(MKL)的不足之处,如收敛速度缓慢以及计算成本高等问题,该文提出一种改进算法——基于随机Polyak步长(SPS)的小批量随机递归梯度下降算法(SPS-MSARAH)来求解多核学习优化问题。首先将小批量方法... 针对随机递归梯度法(SARAH)求解多核学习(MKL)的不足之处,如收敛速度缓慢以及计算成本高等问题,该文提出一种改进算法——基于随机Polyak步长(SPS)的小批量随机递归梯度下降算法(SPS-MSARAH)来求解多核学习优化问题。首先将小批量方法引入随机方差缩减类算法中,选取一个固定大小的样本集代替单个训练样本计算SARAH的梯度,降低传统随机梯度下降算法使用单个样本计算梯度导致较大的波动和不稳定性所带来的方差。在此基础上,使用随机Polyak步长自适应地更新小批量SARAH的步长,使得优化过程更加灵活和鲁棒,从而解决随机优化算法中步长选取的难题。为了验证该算法的有效性,在标准数据集上进行了详细的数值实验。实验结果显示,在求解大规模多核学习优化问题时,SPS-MSARAH算法不仅显著提高了收敛速度,还有效降低了计算复杂度。此外,对初始参数的敏感性问题也得到了很好的克服,展现出良好的鲁棒性。 展开更多
关键词 多核学习 随机递归梯度下降法 随机Polyak步长 小批量 凸优化
在线阅读 下载PDF
基于SPGD算法的GTI腔短脉冲时域相干堆积闭环控制研究
13
作者 刘必达 黄智蒙 +2 位作者 张帆 周丹丹 彭志涛 《光学与光电技术》 2025年第5期118-123,共6页
为了在短脉冲时域相干堆积系统中实现光腔相位高效闭环控制,利用一种基于扰动幅度e指数匀滑的随机并行梯度下降(Stochastic Parallel Gradient Descent Algorithm,SPGD)算法,对Gires-Tournois干涉仪(Gires-Tournois Interferometer,GTI... 为了在短脉冲时域相干堆积系统中实现光腔相位高效闭环控制,利用一种基于扰动幅度e指数匀滑的随机并行梯度下降(Stochastic Parallel Gradient Descent Algorithm,SPGD)算法,对Gires-Tournois干涉仪(Gires-Tournois Interferometer,GTI)堆积腔的相位进行闭环控制,实验研究了增益系数和扰动幅度两个主要算法参量对相干堆积效果的影响,结果表明,两个参数对堆积效果的影响规律相似,设置过小易陷入局部极值,过大会使得堆积波形发生振荡,无法稳定在最大值。通过优化控制参数选取,获得了稳定的相干堆积,合成后主、副脉冲峰值比达到6.43∶1。该结果对短脉冲时域相干堆积中的光腔相位控制具有重要的参考价值。 展开更多
关键词 光纤激光 短脉冲 脉冲相干堆积 光腔相位控制 随机并行梯度下降算法
原文传递
基于随机梯度提升的湘江流域土壤镉和砷空间分布及驱动机制研究
14
作者 李青竹 邢宇康 +10 位作者 甘杰 邹霖 周康 夏辉 黎凌伟 黄晓凤 万雨函 司梦莹 杨卫春 廖骐 杨志辉 《中南大学学报(自然科学版)》 北大核心 2025年第8期3382-3393,共12页
湘江流域作为我国重金属污染典型区域,需用科学方法来实现对土壤镉(Cd)和砷(As)复合污染的精细化管控。本研究采集372个表层土壤样本,基于随机梯度提升(SGB)模型,并结合SHAP算法与地理探测器模型,系统解析Cd、As空间分布特征及驱动机制... 湘江流域作为我国重金属污染典型区域,需用科学方法来实现对土壤镉(Cd)和砷(As)复合污染的精细化管控。本研究采集372个表层土壤样本,基于随机梯度提升(SGB)模型,并结合SHAP算法与地理探测器模型,系统解析Cd、As空间分布特征及驱动机制。研究结果表明:土壤Cd质量分数均值为1.38 mg/kg,内梅罗综合污染指数为36.22,呈重度污染;As质量分数均值为16.62 mg/kg,虽整体污染较轻,但存在局部风险。在Cd、As含量预测方面,SGB模型预测决定系数R^(2)最佳,分别为0.69和0.62。Cd、As污染分布与人类活动、自然地理特征紧密关联,整体上形成了“工业点源高风险—农业区及交通河流沿线中高风险—自然山地低风险”的空间分布格局。Cd的空间分布主要由降水与工业活动协同驱动,As则受自然因子与人为因子的复杂影响,这种差异表明,土壤重金属镉和砷污染治理需充分考虑多维环境变量交互作用,依据主导驱动因素制定差异化、精细化的分区管控策略。 展开更多
关键词 湘江流域 土壤镉和砷污染 随机梯度提升模型 SHAP算法 地理探测器
在线阅读 下载PDF
Distributed Byzantine-Resilient Learning of Multi-UAV Systems via Filter-Based Centerpoint Aggregation Rules
15
作者 Yukang Cui Linzhen Cheng +1 位作者 Michael Basin Zongze Wu 《IEEE/CAA Journal of Automatica Sinica》 2025年第5期1056-1058,共3页
Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication w... Dear Editor,Through distributed machine learning,multi-UAV systems can achieve global optimization goals without a centralized server,such as optimal target tracking,by leveraging local calculation and communication with neighbors.In this work,we implement the stochastic gradient descent algorithm(SGD)distributedly to optimize tracking errors based on local state and aggregation of the neighbors'estimation.However,Byzantine agents can mislead neighbors,causing deviations from optimal tracking.We prove that the swarm achieves resilient convergence if aggregated results lie within the normal neighbors'convex hull,which can be guaranteed by the introduced centerpoint-based aggregation rule.In the given simulated scenarios,distributed learning using average,geometric median(GM),and coordinate-wise median(CM)based aggregation rules fail to track the target.Compared to solely using the centerpoint aggregation method,our approach,which combines a pre-filter with the centroid aggregation rule,significantly enhances resilience against Byzantine attacks,achieving faster convergence and smaller tracking errors. 展开更多
关键词 global optimization goals multi UAV systems filter based centerpoint aggregation distributed learning optimal target trackingby stochastic gradient descent algorithm sgd distributedly optimize tracking distributed machine learningmulti uav
在线阅读 下载PDF
An integrated stochastic model and algorithm for multi-product newsvendor problems
16
作者 Zhaoman Wan Saihua Zhu Zhong Wan 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第4期53-77,共25页
In this paper,a multi-product newsvendor problem is formulated as a random nonlinear integrated optimization model by taking into consideration the selling price,the producing and outsourcing quantities,and the nonlin... In this paper,a multi-product newsvendor problem is formulated as a random nonlinear integrated optimization model by taking into consideration the selling price,the producing and outsourcing quantities,and the nonlinear budget constraint.Different from the existing models,the demands of products depend on the prices,as well as being timevarying due to random market fluctuation.In addition,outsourcing strategy is adopted to deal with possible shortage caused by the limited capacity.Consequently,the constructed model is involved with joint optimization of the producing and outsourcing quantities,and the selling prices of all the products.For this model with continuous random demands,we first transform it into a nonlinear programming problem by expectation method.Then,an efficient algorithm,called the feasible-direction-based spectral conjugate gradient algorithm,is developed to find a robust solution of the model.By case study and sensitivity analysis,some interesting conclusions are drawn as follows:(a)Budget is a critical constraint for optimizing the decision-making of the retailer,and there exist different threshold values of the budget for the substitute and complementarity scenarios.(b)The price sensitivity matrix seriously affects the maximal expected profit mainly through affecting the optimal outsourcing quantity. 展开更多
关键词 Multi-product newsvendor problem efficient algorithm stochastic program spectral conjugate gradient method.
原文传递
基于并行化计算架构的大数据传播推荐算法研究
17
作者 陈玉婷 《自动化与仪器仪表》 2025年第4期207-212,共6页
针对智能推荐算法在高稀疏性数据集中处理效率较差的问题,提出了一种基于并行化计算架构的大数据传播推荐算法。通过利用随机梯度下降法改进并行化计算,再以图形处理器为基础上进行了推荐算法的设计。实验显示,研究提出的算法在3种数据... 针对智能推荐算法在高稀疏性数据集中处理效率较差的问题,提出了一种基于并行化计算架构的大数据传播推荐算法。通过利用随机梯度下降法改进并行化计算,再以图形处理器为基础上进行了推荐算法的设计。实验显示,研究提出的算法在3种数据集中的均方根误差比其他方法明显减少。以某文旅媒体账号数据为例的验证显示,研究提出的推荐算法的均方根误差为1.21,比其他两种方法平均减少了8.33%。结果表明,研究提出的方法能够适应高稀疏性的数据集训练,提高算法推荐精度,提升数据利用效率。该方法在抖音短视频智能推荐领域具有应用意义和可行性。 展开更多
关键词 并行化计算 智能推荐算法 图形处理器 随机梯度下降法 抖音短视频
原文传递
Landsat8光谱衍生数据分类体系下的牧草生物量反演 被引量:8
18
作者 张爱武 张帅 +3 位作者 郭超凡 刘路路 胡少兴 柴沙驼 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第1期239-246,共8页
牧草生物量的估算对于草地资源合理利用和载畜平衡监测具有重要的意义,是评价草地生态系统与草地资源可持续发展的关键指标。基于Landsat遥感技术快速、无损的大面积植被生物量估算研究已广泛应用,当前大多基于单一变量或几个常用植被... 牧草生物量的估算对于草地资源合理利用和载畜平衡监测具有重要的意义,是评价草地生态系统与草地资源可持续发展的关键指标。基于Landsat遥感技术快速、无损的大面积植被生物量估算研究已广泛应用,当前大多基于单一变量或几个常用植被指数构建反演模型,这些指数往往不能从多方面反映植被理化特征。归纳了不同Landsat8光谱衍生数据所反映的植被理化特征及它们间的关联方式,构建了Landsat8光谱衍生数据的分类体系;在此基础上提出了一种基于随机梯度Boosting(SGB)算法的多变量、非线性生物量估算模型,探讨不同类型光谱衍生数据组合对于牧草生物量反演结果的影响。以青海省海晏县为研究区进行方案可行性探讨。结果表明常用的Landsat8光谱衍生数据主要从植被的绿度、黄度、盖度、水分含量、纹理特征以及通过消除大气干扰和土壤背景干扰等7个方面反映植被的理化特征(7个小类),可归纳为直接因子(绿度、黄度、盖度、水分含量)、间接因子(消除大气干扰和消除土壤背景干扰)和空间因子(纹理特征)3大类型。在牧草生物量反演中,这些光谱衍生数据类型间具有较好的互补性,单一的直接因子模型估算结果最差,引入间接因子和空间因子均能提高模型的估算结果,而由直接因子(GNDVI, TCW, NDTI, NDSVI, TCD)、间接因子(SAVI, VARI)和空间因子(MeanB3, MeanB6, HomⅡ, DisB5)共同构建的SGB模型估算精度最优,R2达到了0.88;RMSE为141.00 g·m-2。与5种常用的生物量估算模型结果对比,该方法具有明显的优势。较单变量模型,R2提高了42%~60%,RMSE降低47%以上,R■提高了31%~53%, RMSEcv降低29%;较多变量模型,R2提高了29%~42%, RMSE降低35%以上,R■提高了2%~18%, RMSEcv降低2%以上。此外,所提出方法在消除反演模型过饱和方面也具一定成效。综上,利用Landsat8数据从反映植被不同理化特征角度构建反演模型实现了牧草生物量的精准估算,对于后期牧草生长状况实时监测以及草地资源可持续利用与管理具有重要的指导意义。研究结果还可以为今后进行大面积区域草地动态监测以及其他农业领域的研究提供参考和借鉴。 展开更多
关键词 生物量 随机梯度Boosting算法 Landsat8光谱衍生数据
在线阅读 下载PDF
自适应光学系统几种随机并行优化控制算法比较 被引量:36
19
作者 杨慧珍 李新阳 姜文汉 《强激光与粒子束》 EI CAS CSCD 北大核心 2008年第1期11-16,共6页
直接对系统性能指标进行优化是自适应光学系统中一种重要的波前畸变校正方法,选择合适的随机并行优化控制算法是该技术成功实现的关键。以32单元变形镜为校正器,基于多种随机并行优化算法建立自适应光学系统仿真模型。从算法的收敛速度... 直接对系统性能指标进行优化是自适应光学系统中一种重要的波前畸变校正方法,选择合适的随机并行优化控制算法是该技术成功实现的关键。以32单元变形镜为校正器,基于多种随机并行优化算法建立自适应光学系统仿真模型。从算法的收敛速度、校正效果、局部极值3个方面对遗传算法、单向扰动随机并行梯度下降、双向扰动随机并行梯度下降及模拟退火算法进行了比较。仿真结果表明,遗传算法收敛速度太慢,不适用于需要实时控制的自适应光学系统;双向扰动随机并行梯度下降算法收敛速度、校正效果要优于单向扰动随机并行梯度下降,且能够适应各种情况下的扰动电压;模拟退火几乎以概率1收敛到全局极值附近,且收敛速度是上述算法中最快的。 展开更多
关键词 自适应光学系统 随机并行梯度下降算法 模拟退火 遗传算法 数值仿真
在线阅读 下载PDF
32路光纤激光相干阵列的相位锁定 被引量:11
20
作者 粟荣涛 周朴 +2 位作者 王小林 马阎星 许晓军 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第11期1-2,共2页
报道了32路光纤激光相干阵列的相位锁定实验研究。搭建了32路光纤激光相干阵列实验系统,基于现场可编程逻辑阵列(FPGA)设计制作了高速高精度相位控制器。当相位控制器执行随机并行梯度下降(SPGD)算法对各路激光的相位进行锁定时,相干阵... 报道了32路光纤激光相干阵列的相位锁定实验研究。搭建了32路光纤激光相干阵列实验系统,基于现场可编程逻辑阵列(FPGA)设计制作了高速高精度相位控制器。当相位控制器执行随机并行梯度下降(SPGD)算法对各路激光的相位进行锁定时,相干阵列输出的激光功率与不进行相位锁定时相比提高了约26倍。 展开更多
关键词 相干合成 光纤激光 相位锁定 随机并行梯度下降算法
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部