期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An efficient stiffness analysis model based on shear deformation theory for flexible skin shear variable-sweep wing 被引量:1
1
作者 Yue BAI Guang YANG +3 位作者 Hong XIAO Hongwei GUO Rongqiang LIU Bei LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期445-458,共14页
Fixed-wing aircraft cannot maintain optimal aerodynamic performance at different flight speeds. As a type of morphing aircraft, the shear variable-sweep wing(SVSW) can dramatically improve its aerodynamic performance ... Fixed-wing aircraft cannot maintain optimal aerodynamic performance at different flight speeds. As a type of morphing aircraft, the shear variable-sweep wing(SVSW) can dramatically improve its aerodynamic performance by altering its shape to adapt to various flight conditions.In order to achieve smooth continuous shear deformation, SVSW's skin adopts a flexible composite skin design instead of traditional aluminum alloy materials. However, this also brings about the non-linear difficulty in stiffness modeling and calculation. In this research, a new SVSW design and efficient stiffness modeling method are proposed. Based on shear deformation theory, the flexible composite skin is equivalently modeled as diagonally arranged nonlinear springs, simulating the elastic force interaction between the skin and the mechanism. By shear loading tests of flexible composite skin, the accuracy of this flexible composite skin modeling method is verified. The SVSW stiffness model was established, and its accuracy was verified through static loading tests. The effects of root connection, sweep angles, and flexible composite skin on the SVSW stiffness are analyzed. Finally, considering three typical flight conditions of SVSW: low-speed flow(Ma = 0.3,Re = 5.82 × 10^(6)), transonic flow(Ma = 0.9, Re = 3.44 × 10^(6)), and supersonic flow(Ma = 3,Re = 7.51 × 10^(6)), the stiffness characteristics of SVSW under flight conditions were evaluated.The calculated results guide the application of SVSW. 展开更多
关键词 Shear variable-sweep wing(SVSW) Flexible composite skin Morphing mechanism Stiffness analysis Loading tests Structure
原文传递
A novel videogrammetry-based full-field dynamic deformation monitoring method for variable-sweep wings
2
作者 Liqiang Gao Yan Liu +5 位作者 Bin Jiang Zhendong Ge Haoyang Li Xiang Guo Tao Suo Qifeng Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期120-132,共13页
The measurement of wing dynamic deformation in morphing aircraft is crucial for achieving closed-loop control and evaluating structural safety.For variable-sweep wings with active large deformation,this paper proposes... The measurement of wing dynamic deformation in morphing aircraft is crucial for achieving closed-loop control and evaluating structural safety.For variable-sweep wings with active large deformation,this paper proposes a novel videogrammetric method for full-field dynamic deformation measurement.A stereo matching method based on epipolar geometry constraint and topological constraint is presented to find the corresponding targets between stereo images.In addition,a new method based on affine transformation combined with adjacent closest point matching is developed,aiming to achieve fast and automatic tracking of targets in time-series images with large deformation.A calculation model for dynamic deformation parameters is established to obtain the displacement,sweep variable angle,and span variation.To verify the proposed method,a dynamic deformation measurement experiment is conducted on a variable-sweep wing model.The results indicate that the actual accuracy of the proposed method is approximately 0.02%of the measured area(e.g.,0.32 mm in a 1.6 m scale).During one morphing course,the sweep variable angle,the span variation and the displacement increase gradually,and then decrease.The maximum sweep variable angle is 36.6°,and the span variation is up to 101.13 mm.The overall configuration of the wing surface is effectively reconstructed under different morphing states. 展开更多
关键词 Morphing aircraft variable-sweep wing Videogrammetry Large dynamic deformation Target matching and tracking
原文传递
Mechanism analysis of hysteretic aerodynamic characteristics on variable-sweep wings 被引量:4
3
作者 Lifang ZENG Liu LIU +1 位作者 Xueming SHAO Jun LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期212-222,共11页
Variable-sweep wings have large shape-changing capabilities and wide flight envelops,which are considered as one of the most promising directions for intelligent morphing UAVs.Aerodynamic investigations always focus o... Variable-sweep wings have large shape-changing capabilities and wide flight envelops,which are considered as one of the most promising directions for intelligent morphing UAVs.Aerodynamic investigations always focus on several static states in the varying sweep process,which ignore the unsteady aerodynamic characteristics.However,deviations to static aerodynamic forces are inevitably caused by dynamic sweep motion.In this work,first,unsteady aerodynamic characteristics on a typical variable-sweep UAV with large aspect ratio were analyzed.Then,deep mechanism of unsteady aerodynamic characteristics in the varying sweep process was studied.Finally,numerical simulation method integrated with structured moving overset grids was applied to solve the unsteady fluid of varying sweep process.The simulation results of a sweep forward-backward circle show a distinct dynamic hysteresis loop surrounding the static data for the aerodynamic forces.Compared with the static lift coefficients,at the same sweep angles,dynamic lift coefficient in sweep forward process are all smaller,while dynamic sweep backward lift coefficient are all larger.In addition,dynamic deviations to static lift coefficient are positively related with the varying sweep speeds.Mechanism study on the unsteady aerodynamic characteristics indicates that three key factors lead to the dynamic hysteresis loop in varying sweep process.They are the effects of additional velocity caused by varying sweep motion,the effects of flow hysteresis and viscosity.The additional velocity induced by sweep motion affects the transversal flow direction along the wing and the effective angle of attack at the airfoil profile.The physical properties of flow,the hysteresis and viscosity affect the unsteady aerodynamic characteristics by flow separation and induced vortexes. 展开更多
关键词 HYSTERESIS MECHANISM Numerical simulation Unsteady aerodynamic characteristics variable-sweep wings
原文传递
A novel evasion guidance for hypersonic morphing vehicle via intelligent maneuver strategy 被引量:2
4
作者 Xun LI Xiaogang WANG +1 位作者 Hongyu ZHOU Yu LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期441-461,共21页
This paper presents a novel evasion guidance law for hypersonic morphing vehicles,focusing on determining the optimized wing's unfolded angle to promote maneuverability based on an intelligent algorithm.First,the ... This paper presents a novel evasion guidance law for hypersonic morphing vehicles,focusing on determining the optimized wing's unfolded angle to promote maneuverability based on an intelligent algorithm.First,the pursuit-evasion problem is modeled as a Markov decision process.And the agent's action consists of maneuver overload and the unfolded angle of wings,which is different from the conventional evasion guidance designed for fixed-shape vehicles.The reward function is formulated to ensure that the miss distances satisfy the prescribed bounds while minimizing energy consumption.Then,to maximize the expected cumulative reward,a residual learning method is proposed based on proximal policy optimization,which integrates the optimal evasion for linear cases as the baseline and trains to optimize the performance for nonlinear engagement with multiple pursuers.Therefore,offline training guarantees improvement of the constructed evasion guidance law over conventional ones.Ultimately,the guidance law for online implementation includes only analytical calculations.It maps from the confrontation state to the expected angle of attack and the unfolded angle while retaining high computational efficiency.Simulations show that the proposed evasion guidance law can utilize the change of unfolded angle to extend the maximum overload capability.And it surpasses conventional maneuver strategies by ensuring better evasion efficacy and higher energy efficiency. 展开更多
关键词 Hypersonic vehicles variable-sweep wings Evasion guidance Reinforcement learning Pursuit-evasion problem
原文传递
Adaptive Sliding Mode BTT Autopilot for Cruise Missiles with Variable-Swept Wings 被引量:2
5
作者 Wei-Ming Li Rui-Sheng Sun +1 位作者 Hong-Yang Bai Peng-Yun Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第2期33-42,共10页
In this paper,an adaptive sliding mode method was proposed for BTT autopilot of cruise missiles with variable-swept wings. To realize the whole state feedback,the roll angle,normal overloads and angular rates were con... In this paper,an adaptive sliding mode method was proposed for BTT autopilot of cruise missiles with variable-swept wings. To realize the whole state feedback,the roll angle,normal overloads and angular rates were considered as state variables of the autopilot,and a parametric sliding mode controller was designed via feedback linearization. A novel parametric adaptation law was put forward to estimate the nonlinear timevarying parameter perturbations in real time based on Lyapunov stability theory. A sliding mode boundary layer theory was adopted to smooth the discontinuity of control variables and eliminate the control chattering. The simulation was presented for the roll angle and overload commands tracking in different configuration schemes. The results indicated that the controlled system has robust dynamic tracking performance in condition of the large-scale aerodynamic parametric variety resulted from variable-swept wings. 展开更多
关键词 BTT autopilot adaptive sliding mode control variable-sweep wing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部