期刊文献+
共找到765篇文章
< 1 2 39 >
每页显示 20 50 100
Variable Step Filtered-X Least Mean Square Algorithm Based on Piecewise Logarithmic Function
1
作者 Zeyi Ding Jianan Bian +1 位作者 Xinyuan Jiang Xi Chen 《Journal of Physical Science and Application》 2024年第1期16-24,共9页
In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS ... In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS algorithm based on logarithmic function(PLFxLMS)is proposed,and the genetic algorithm are introduced to optimize the parameters of logarithmic variable step size FxLMS(LFxLMS),improved logarithmic variable step size Films(IFxLMS),and PLFxLMS algorithms.Bandlimited white noise is used as the input signal,FxLMS,LFxLMS,ILFxLMS,and PLFxLMS algorithms are used to conduct active noise control simulation,and the convergence speed and steady-state characteristic of four algorithms are comparatively analyzed.Compared with the other three algorithms,the PLFxLMS algorithm proposed in this paper has the fastest convergence speed,and small steady-state error.The PLFxLMS algorithm can effectively improve the convergence speed and steady-state error of the FxLMS algorithm that cannot be controlled at the same time,and achieve the optimal effect. 展开更多
关键词 Active noise control filtered-x least mean square algorithm variable step size genetic algorithm
在线阅读 下载PDF
An Improved Proportionate Normalized Least Mean Square Algorithm for Sparse Impulse Response Identification
2
作者 文昊翔 赖晓翰 +1 位作者 陈隆道 蔡忠法 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第6期742-748,共7页
In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coef... In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity. 展开更多
关键词 adaptive algorithm echo cancellation(EC) proportionate normalized least mean square(PNLMS) algorithm proportionate step-size sparse impulse response
原文传递
A new method of lung sounds filtering using modulated least mean square—Adaptive noise cancellation
3
作者 Noman Qaid Al-Naggar 《Journal of Biomedical Science and Engineering》 2013年第9期869-876,共8页
Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new ... Advanced processing of lung sound (LS) recording is a significant means to separate heart sounds (HS) and combined low frequency noise from instruments (NI), with saving its characteristics. This paper proposes a new method of LS filtering which separates HS and NI simultaneously. It focuses on the application of least mean squares (LMS) algorithm with adaptive noise cancelling (ANC) technique. The second step of the new method is to modulate the reference input r1(n) of LMS-ANC to acquiesce combining HS and NI signals. The obtained signal is removed from primary signal (original lung sound recording-LS). The original signal is recorded from subjects and derived HS from it and it is modified by a band pass filter. NI is simulated by generating approximately periodic white gaussian noise (WGN) signal. The LMS-ANC designed algorithm is controlled in order to determine the optimum values of the order L and the coefficient convergence μ. The output results are measured using power special density (PSD), which has shown the effectiveness of our suggested method. The result also has shown visual difference PSD (to) normal and abnormal LS recording. The results show that the method is a good technique for heart sound and noise reduction from lung sounds recordings simultaneously with saving LS characteristics. 展开更多
关键词 LUNG SOUND FILTERING of LUNG SOUND Least mean squareS algorithm Adaptive Noise Cancelling
暂未订购
基于PCA-Kmeans的电动公交车起步驾驶行为分类与节能行为量化指导 被引量:1
4
作者 王庆宇 《智能计算机与应用》 2025年第5期97-104,共8页
纯电动公交车在动力特性及驾驶操作行为上区别于传统燃油公交车,因此在节能驾驶操作上,应做出相对应的调整。现有研究的节能驾驶建议主要为定性建议,本文提出了一种从数据驱动角度给予定量建议的办法,通过借鉴国家标准GB/T38146中重型... 纯电动公交车在动力特性及驾驶操作行为上区别于传统燃油公交车,因此在节能驾驶操作上,应做出相对应的调整。现有研究的节能驾驶建议主要为定性建议,本文提出了一种从数据驱动角度给予定量建议的办法,通过借鉴国家标准GB/T38146中重型商用车工况构建时的特征参数集,采用主成分分析法(PCA)对特征参数进行降维,采用K-means算法实现驾驶习惯片段的分类提取,根据低功耗片段,选用加速踏板的特征参数,计算得到量化的节能驾驶数值,使用最小二乘法拟合出合适的低功耗速度走势曲线及方程,拟合优度为0.8419,给出一些经济节约指导办法。 展开更多
关键词 数据驱动 新能源汽车 主成分分析法 K-meanS算法 最小二乘法拟合 定量建议
在线阅读 下载PDF
Variable Projection Order Adaptive Filtering Algorithm for Self-interference Cancellation in Airborne Radars
5
作者 LI Haorui GAO Ying +1 位作者 GUO Xinyu OU Shifeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期497-508,共12页
The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in... The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference. 展开更多
关键词 adaptive filtering algorithm airborne radar variable projection order mean squared deviation self-interference cancellation
在线阅读 下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:3
6
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
在线阅读 下载PDF
Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm 被引量:2
7
作者 Jin-Hui Ye Dan Shi +2 位作者 Yue-Sheng Qi Jin-Hui Gao Jian-Xin Shen 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期61-71,共11页
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the... Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively. 展开更多
关键词 Active Magnetic Bearing(AMB) Adaptive filter Iterative search algorithm Least mean square(LMS) Vibration suppression
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
8
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least square Method Robust Least square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-Nearest Neighbor and mean imputation
在线阅读 下载PDF
基于优化模糊C-means算法的不平衡大数据分类研究
9
作者 卓柳俊 曾心怡 《信息技术》 2024年第10期14-21,29,共9页
针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的... 针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的处理方式,定义不平衡阈向量,从而完善整个分类流程,完成基于优化模糊C-means算法的不平衡大数据分类方法的设计。实验结果表明,上述分类方法的应用,可将正例信息、负例信息的取样长度区间完全分离开来,能有效解决因不平衡大数据分类不精准造成的信息样本混淆的问题,符合实际应用需求。 展开更多
关键词 优化模糊C-means算法 不平衡大数据 交叉算子 卡方检验 压缩模糊近邻值
在线阅读 下载PDF
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
10
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
基于PSAF-LMS算法的多象限周视激光引信抗云雾干扰方法
11
作者 查冰婷 徐光博 +1 位作者 秦建新 张合 《兵工学报》 北大核心 2025年第2期275-286,共12页
叠加在目标回波上的云雾后向散射信号是影响空空导弹周视激光引信测距精度的重要因素。针对目前抗云雾干扰方法适应性差、处理时效低等问题,提出一种基于可暂停样条自适应滤波的最小均方(Pauseable Spline Adaptive Filter-Least Mean S... 叠加在目标回波上的云雾后向散射信号是影响空空导弹周视激光引信测距精度的重要因素。针对目前抗云雾干扰方法适应性差、处理时效低等问题,提出一种基于可暂停样条自适应滤波的最小均方(Pauseable Spline Adaptive Filter-Least Mean Square,PSAF-LMS)算法,并设计了算法在现场可编程门阵列(Field-Programmable Gate Array,FPGA)与ARM的联合实现方案。PSAF-LMS算法可有效减少滤波器的稳态误差,并提高激光引信的时刻鉴别精度和抗干扰能力。此外,利用不同信噪比的目标回波信号进行仿真,并开展了云雾环境滤波效果模拟验证试验。研究结果表明:所提算法能够在34.85μs内有效滤除后向散射,并保留目标波峰原始变化趋势,滤波前后信噪比平均可提高25.15 dB以上。 展开更多
关键词 激光引信 后向散射 自适应滤波 样条最小均方算法
在线阅读 下载PDF
用于块稀疏信道估计的改进μ率PNLMS算法
12
作者 靳展 李前进 +1 位作者 马霖峰 杨忠豪 《微处理机》 2025年第4期1-7,共7页
针对现有通信系统中存在信道响应呈现块稀疏特性的问题,对成比例自适应滤波算法展开研究。由于块稀疏信道大幅值系数成簇分布,因此将自适应滤波器抽头权重平均划分成若干分组,将大幅值系数分配到一个或几个分组中,再对每个分组统一分配... 针对现有通信系统中存在信道响应呈现块稀疏特性的问题,对成比例自适应滤波算法展开研究。由于块稀疏信道大幅值系数成簇分布,因此将自适应滤波器抽头权重平均划分成若干分组,将大幅值系数分配到一个或几个分组中,再对每个分组统一分配步长,取代传统算法中为每个系数单独分配步长的方案。本研究在μ律比例归一化最小均方(MPNLMS)算法的代价函数中,加入两种混合范数约束l2,1和l2,0,提出l2,1-MPNLMS算法和l2,0-MPNLMS算法,详细推导了所提出的算法,并且在网络回声信道估计背景下对算法性能进行分析。仿真结果表明,与传统算法相比,所提算法无论在处理单块稀疏还是多块稀疏的情况下,都具有更快的收敛速度和更低的稳定性。 展开更多
关键词 自适应滤波 块稀疏 μ律比例归一化最小均方(MPNLMS)算法 混合范数约束
在线阅读 下载PDF
LTE系统中的Mean-OTDOA定位算法 被引量:7
13
作者 陈亚军 彭建华 +1 位作者 黄开枝 罗文宇 《计算机应用研究》 CSCD 北大核心 2014年第6期1783-1786,共4页
由于LTE蜂窝网中远近效应的影响,终端测量到的邻近基站信号的定位参数会存在较大的偏差,导致OTDOA定位方法(到达时间差定位法)估计的终端位置存在较大误差。基于此,提出一种改进的Mean-OTDOA定位算法。首先估计终端与各基站的时延,然后... 由于LTE蜂窝网中远近效应的影响,终端测量到的邻近基站信号的定位参数会存在较大的偏差,导致OTDOA定位方法(到达时间差定位法)估计的终端位置存在较大误差。基于此,提出一种改进的Mean-OTDOA定位算法。首先估计终端与各基站的时延,然后对终端与多基站的距离测量值进行平均,作为OTDOA定位方法中的参考距离,最后利用泰勒级数展开法对终端位置进行估计。仿真结果表明,该算法可提高终端的定位精度,在基站数目为5、测量误差标准差为50 m时,本算法的均方根误差比OTDOA算法降低了5.2039 m,且随着基站数目的增加,定位精度的改善程度优于OTDOA算法。 展开更多
关键词 LTE系统 远近效应 mean-OTDOA定位算法 泰勒级数 均方根误差
在线阅读 下载PDF
改进k-means聚类算法多模型建模的一种新的评价函数 被引量:6
14
作者 周立芳 周芦文 赵豫红 《化工学报》 EI CAS CSCD 北大核心 2007年第8期2051-2055,共5页
The modeling and control of pH neutralization processes is a difficult problem in the field of process control.A multi-modeling method using an improved k-means clustering based on a new validity function is proposed ... The modeling and control of pH neutralization processes is a difficult problem in the field of process control.A multi-modeling method using an improved k-means clustering based on a new validity function is proposed in this paper.There are some common problems, including the number of clusters assumed as a priori knowledge and initial cluster centers selected randomly for classical k-means clustering.The proposed algorithm is used to compute initial cluster centers and a new validity function is added to determine the appropriate number of clusters, then partial least squares (PLS) is used to construct the regression equation for each local cluster.Simulation results showed that multiple models using the proposed algorithm gave good performance, and the feasibility and validity of the proposed algorithm was verified. 展开更多
关键词 K-meanS聚类 性能评价函数 PH中和过程 偏最小二乘算法
在线阅读 下载PDF
通风对主动降噪潜在影响分析及风噪声抑制算法
15
作者 褚轶景 施宇 +2 位作者 颜宇航 孙海涛 牛锋 《载人航天》 北大核心 2025年第4期465-471,共7页
通风口处空气流动往往会引起基于前馈控制的主动降噪系统性能下降,针对通风口处风噪声控制问题,提出一种风噪声抑制主动降噪(ANC)算法。对风环境下滤波x最小均方(FxLMS)算法理论分析,并在消声室内验证ANC系统(ANC耳机)受风噪声影响。理... 通风口处空气流动往往会引起基于前馈控制的主动降噪系统性能下降,针对通风口处风噪声控制问题,提出一种风噪声抑制主动降噪(ANC)算法。对风环境下滤波x最小均方(FxLMS)算法理论分析,并在消声室内验证ANC系统(ANC耳机)受风噪声影响。理论分析及实验表明:ANC系统降噪效果随风速增加而降低。然后,在考虑风噪声频谱特性的基础上,结合整体最小二乘技术对传统FxLMS算法进行改进。仿真结果及消声室测量表明:提出的改进算法能有效抑制风噪声干扰,降噪性能接近无风时的情况,可将风环境的降噪量提高3~6 dB。 展开更多
关键词 风噪声 主动噪声控制 滤波x最小均方算法 整体最小二乘
在线阅读 下载PDF
基于改进型K-means聚类的温度插值算法 被引量:6
16
作者 杜景林 沈晓燕 《计算机工程与设计》 北大核心 2016年第11期2992-2998,共7页
针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点及初始聚类中心对聚类结果的影响,提出一种基于改进型K-means聚类和正交最小二乘法的RBFNN算法。利用改进型K-means聚类算法对输入样本数据进行聚类处理,自适应地确定RB... 针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点及初始聚类中心对聚类结果的影响,提出一种基于改进型K-means聚类和正交最小二乘法的RBFNN算法。利用改进型K-means聚类算法对输入样本数据进行聚类处理,自适应地确定RBFNN隐含层的初始参数,利用正交最小二乘法求隐含层权值,建立RBFNN温度空间插值模型,用已有温度数据加以验证。实验结果表明,该算法能够解决K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的问题,具有较高的插值精度。 展开更多
关键词 改进型K-means聚类算法 聚类中心 径向基神经网络 正交最小二乘法 温度插值
在线阅读 下载PDF
基于IPOA-SVR模型的边坡安全系数预测 被引量:1
17
作者 张佳琳 王孝东 +4 位作者 吴雅菡 水宽 张玉 程玥淞 杜青文 《有色金属(矿山部分)》 2025年第1期115-123,共9页
安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)... 安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)与支持向量机(SVR)结合的回归模型来预测边坡安全系数。首先,融合多策略将原始的鹈鹕算法进行改进;再运用改进的鹈鹕算法与支持向量机结合,选取六个影响因素作为IPOA-SVR模型的输入层指标并对模型进行训练,得到IPOA-SVR边坡稳定性预测模型;最后,分别与KNN、RF和Adaboost模型对比,并计算各个模型在训练集和测试集上的均方误差(MSE),以此来验证IPOA-SVR模型的优越性。实验结果显示:与其他模型相比,IPOA-SVR模型寻优性能强,在测试集上的均方误差为0.030 9、相关系数为0.91,说明本文对POA算法所用策略的有效性,IPOA-SVR模型可以为边坡失稳灾害的相关预测提供坚实的技术基础。 展开更多
关键词 安全系数 鹈鹕算法 支持向量机 边坡稳定性 均方误差
在线阅读 下载PDF
基于SPU-McFxLMS算法的涡桨飞机舱内噪声主动控制研究
18
作者 沈昊 董宁娟 +3 位作者 薛青 陈逸笑 鹿澳沣 沈星 《振动.测试与诊断》 北大核心 2025年第3期594-599,627,628,共8页
涡桨飞机座舱的主动噪声控制系统普遍采用传统的多通道滤波x最小均方(multichannel filtered-x least mean square,简称McFxLMS)算法,该算法的计算量随着通道数的增加而激增,严重影响控制效果。针对该问题,基于连续局部迭代-McFxLMS(seq... 涡桨飞机座舱的主动噪声控制系统普遍采用传统的多通道滤波x最小均方(multichannel filtered-x least mean square,简称McFxLMS)算法,该算法的计算量随着通道数的增加而激增,严重影响控制效果。针对该问题,基于连续局部迭代-McFxLMS(sequential partial update-McFxLMS,简称SPU-McFxLMS)算法,开发了多通道主动噪声控制系统。SPU-McFxLMS算法通过更新部分滤波器权值,在保证收敛精度的同时能够显著降低计算复杂度。首先,对比分析了传统McFxLMS算法与SPU-McFxLMS算法的原理差异,通过理论推导证明其计算效率提升特性;其次,建立了算法仿真模型,通过仿真验证了理论分析结果;最后,基于SOM-TL6678核心板开发了16通道的主动噪声控制系统,并搭建飞机座舱地面模拟实验平台进行实验。结果表明,该系统在108 Hz和216 Hz双频噪声场景下,各位置的平均降噪量能够达到10 dB以上。 展开更多
关键词 主动噪声控制 多通道系统 滤波x最小均方算法 涡桨飞机舱内噪声
在线阅读 下载PDF
一种基于均方差属性加权的K-means算法 被引量:5
19
作者 冯荣耀 上官廷华 柳宏川 《信息技术》 2010年第3期55-57,共3页
在传统的K-means聚类算法基础上提出了一种基于均方差属性加权的MWS-K-means算法。引入特征权重以提高聚类结果的类内相似度(intra-similarities),从而提高聚类精度。考虑到K-means算法采用误差平方和作为聚类准则函数,而误差平方和与... 在传统的K-means聚类算法基础上提出了一种基于均方差属性加权的MWS-K-means算法。引入特征权重以提高聚类结果的类内相似度(intra-similarities),从而提高聚类精度。考虑到K-means算法采用误差平方和作为聚类准则函数,而误差平方和与概率论中数字特征的基本描述方法———均方差具有较高相似性,算法中特征权重的计算采用均方差法。根据属性的离散程度对欧氏距离进行加权处理,从而用相对距离代替绝对距离来计算类间相似度。实验结果表明:MWS-K-means算法在聚类精度方面优于标准的K-means算法。 展开更多
关键词 K-meanS算法 属性权重 均方差
在线阅读 下载PDF
基于向量加权平均算法优化最小二乘支持向量机的电价短期预测 被引量:1
20
作者 陈晓华 吴杰康 杨国荣 《黑龙江电力》 2025年第1期1-7,共7页
针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模... 针对电价短期预测精度低等问题,提出一种基于向量加权平均算法优化最小二乘支持向量机的电价短期预测模型。将电价的历史数据归一化后作为输入变量;利用INFO优化LSSVM的惩罚因子和核函数参数,从而利用最优的参数值构建INFO-LSSVM预测模型;选取某地区2010年1月1日-15日的电力价格数据进行分析。仿真结果表明:与核极限学习机、长短期记忆神经网络、LSSVM预测模型相比,INFO-LSSVM预测模型的预测效果更好;利用果蝇优化算法优化LSSVM的惩罚因子和核函数参数构建FOA-LSSVM预测模型的预测效果不及INFO-LSSVM预测模型,并且INFO的收敛速度比FOA快。通过与对照预测模型对比表明,INFO-LSSVM预测模型具有更好的预测性能。 展开更多
关键词 向量加权平均算法 最小二乘支持向量机 电价预测 短期预测 INFO-LSSVM预测模型
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部