期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
On the Cosmic Evolution of the Quantum Vacuum Using Two Variable G Models and Winterberg’s Thesis
1
作者 Christopher Pilot 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第4期1134-1160,共27页
We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion... We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum. 展开更多
关键词 Winterberg Model Planck Particles Positive and Negative Mass Planck Particles Planckions Quantum Vacuum Space as a Superfluid/Supersolid Extended models for Space Cosmological Constant Higgs Field as a Composite Particle Higgs Boson Inherent Length Scale for the Vacuum Dark Energy Cosmological Scaling Behavior for the Quantum Vacuum variable g models Extended gravity Newton’s Constant as an Order Parameter High Energy Behavior for the Vacuum
在线阅读 下载PDF
Inflation and Rapid Expansion in a Variable G Model
2
作者 Christopher Pilot 《International Journal of Astronomy and Astrophysics》 2020年第4期334-345,共12页
Cosmic inflation is considered assuming a cosmologically varying Newtonian gravitational constant, <em>G.</em> Utilizing two specific models for, <em>G</em><sup>-1</sup>(a), where, ... Cosmic inflation is considered assuming a cosmologically varying Newtonian gravitational constant, <em>G.</em> Utilizing two specific models for, <em>G</em><sup>-1</sup>(a), where, a, is the cosmic scale parameter, we find that the Hubble parameter, <em>H</em>, at inception of <em style="white-space:normal;">G</em><sup style="white-space:normal;">-1</sup>, may be as high as 7.56 E53 km/(s Mpc) for model A, or, 8.55 E53 km/(s Mpc) for model B, making these good candidates for inflation. The Hubble parameter is inextricably linked to <em>G</em> by Friedmanns’ equation, and if <em>G</em> did not exist prior to an inception temperature, then neither did expansion. The CBR temperatures at inception of <em style="white-space:normal;">G</em><sup style="white-space:normal;">-1</sup> are estimated to equal, 6.20 E21 Kelvin for model A, and 7.01 E21 for model B, somewhat lower than CBR temperatures usually associated with inflation. These temperatures would fix the size of Lemaitre universe in the vicinity of 3% of the Earths’ radius at the beginning of expansion, thus avoiding a singularity, as is the case in the ΛCDM model. In the later universe, a variable<em> G </em>model cannot be dismissed based on SNIa events. In fact, there is now some compelling astronomical evidence, using rise times and luminosity, which we discuss, where it could be argued that SNIa events can only be used as good standard candles if a variation in <em>G</em> is taken into account. Dark energy may have more to do with a weakening <em>G</em> with increasing cosmological time, versus an unanticipated acceleration of the universe, in the late stage of cosmic evolution. 展开更多
关键词 Cosmic Inflation variable g Model SNIa Events Dark Energy Lemaitre Cosmology
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部