期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Zn and S in situ-doped vanadium-based metal–organic framework derivatives for aqueous zinc ion batteries
1
作者 Kun Ran Qian-Lin Chen +1 位作者 Fang-Xiang Song Yun-Long Wu 《Rare Metals》 2025年第6期3852-3868,共17页
Cathode materials with excellent performance are a key to exploiting aqueous zinc ion batteries.In this study,we developed a cathode material for aqueous zinc ion batteries using an in situ anion–cation pre-intercala... Cathode materials with excellent performance are a key to exploiting aqueous zinc ion batteries.In this study,we developed a cathode material for aqueous zinc ion batteries using an in situ anion–cation pre-intercalation strategy with a metal–organic framework.In situ doping of S and Zn in a vanadium-based metal–organic framework structure forms a Zn–S pre-intercalated vanadium oxide((Zn,S)VO)composite.The combination of the additional Zn^(2+)storage sites with pseudocapacitive behavior on the amorphous surface of the enriched oxygen defects and the enhancement of the structural toughness by strong ionic bonding together the unique nanostructure of the nanochains by the process of‘‘oriented attachment’’led to the preparation of the high-performance(Zn,S)VO composite.The results show that the(Zn,S)VO electrode has a capacity of 602.40 mAh·g^(-1)at 0.1 A·g^(-1),an initial discharge capacity of 300.60 mAh·g^(-1)at 10.0 A·g^(-1),and a capacity retention rate of 99.93%after 3,500 cycles.Using the gel electrolyte,the capacity of(Zn,S)VO electrode is 233.15 and 650.93 mAh·g^(-1)at 0.2 A·g^(-1)in-20 and 60°C environments,respectively.Meanwhile,the(Zn,S)VO flexible batteries perform well in harsh environments. 展开更多
关键词 Aqueous zinc ion batteries vanadium-based metal-organic frameworks In situ pre-intercalated Oxygen defect Zinc doping
原文传递
Vanadium-based alloy for hydrogen storage:a review 被引量:1
2
作者 Han-Yang Kong Qing-Feng Xie +4 位作者 Chao-Ling Wu Yao Wang Yun-Gui Chen Hai-Wen Li Yi-Gang Yan 《Rare Metals》 CSCD 2024年第12期6201-6232,共32页
Storage of hydrogen in solid-state materials offers a safer and compacter way compared to compressed and liquid hydrogen.Vanadium(V)-based alloys attract wide attention,owing to the total hydrogen storage capacity of ... Storage of hydrogen in solid-state materials offers a safer and compacter way compared to compressed and liquid hydrogen.Vanadium(V)-based alloys attract wide attention,owing to the total hydrogen storage capacity of 3.8 wt% and reversible capacity above 2.0 wt%at ambient conditions,surpassing the AB_(5)-,AB_(2)-and ABtype hydrogen storage alloys.However,several challenges,such as insufficient capacity,cyclic stability and high raw material costs,hinder the practical applications of V-based alloys.This review provides an overview of the recent advances in hydrogen storage properties of V-based alloys.The mechanism and optimization strategies of hydrogen storage properties and cyclic stability are discussed in detail,and furthermore,the approaches to reduce manufacturing costs are compared comprehensively. 展开更多
关键词 Hydrogen storage vanadium-based alloys Reversible hydrogen capacity Cycling stability Cheap resources
原文传递
Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium-sulfur battery cathodes 被引量:3
3
作者 Xinji Dong Qiao Deng +3 位作者 Fengxing Liang Pei Kang Shen Jinliang Zhu Cheng Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期118-134,I0003,共18页
Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active mat... Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active materials severely restrict the development of Li-S batteries.Constructing conductive sulfur scaffolds with catalytic conversion capability for cathodes is an efficient approach to solving above issues.Vanadium-based compounds and their heterostructures have recently emerged as functional sulfur catalysts supported on conductive scaffolds.These compounds interact with polysulfides via different mechanisms to alleviate the shuttle effect and accelerate the redox kinetics,leading to higher Coulombic efficiency and enhanced sulfur utilization.Reports on vanadium-based nanomaterials in Li-S batteries have been steadily increasing over the past several years.In this review,first,we provide an overview of the synthesis of vanadium-based compounds and heterostructures.Then,we discuss the interactions and constitutive relationships between vanadium-based catalysts and polysulfides formed at sulfur cathodes.We summarize the mechanisms that contribute to the enhancement of electrochemical performance for various types of vanadium-based catalysts,thus providing insights for the rational design of sulfur catalysts.Finally,we offer a perspective on the future directions for the research and development of vanadium-based sulfur catalysts. 展开更多
关键词 vanadium-based compound vanadium-based heterostructure Lithium-sulfur battery Sulfur catalyst Polysulfide regulation
在线阅读 下载PDF
Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries 被引量:24
4
作者 Min Chen Shu-Chao Zhang +7 位作者 Zheng-Guang Zou Sheng-Lin Zhong Wen-Qin Ling Jing Geng Fang-An Liang Xiao-Xiao Peng Yang Gao Fa-Gang Yu 《Rare Metals》 SCIE EI CAS CSCD 2023年第9期2868-2905,共38页
Research on energy storage technology is a vital part of realizing the dual-carbon strategy at this stage.Aqueous zinc-ion batteries(AZIBs)are favorable competitors in various energy storage devices due to their high ... Research on energy storage technology is a vital part of realizing the dual-carbon strategy at this stage.Aqueous zinc-ion batteries(AZIBs)are favorable competitors in various energy storage devices due to their high energy density,reassuring intrinsic safety,and unique cost advantages.The design of cathode materials is crucial for the large-scale development and application of AZIBs.Vanadium-based oxides with high theoretical capacity,diverse valence states,as well as high electrochemical activity,have been widely used as cathode materials for AZIBs.Unfortunately,there are some obstacles,including low electronic conductivity and sluggish kinetics,hindering their further application in AZIBs.In view of the above,this review will introduce a series of modification methods including morphology design,defect engineering,ingenious combination with conductive materials,and modification of electrolyte and zinc anode according to the intrinsic disadvantage of vanadium oxides and summarize the research progress of various modification methods including zinc storage performance and mechanism.Finally,several reasonable prospects will be proposed to appease the needs of basic research and practical applications according to the current status. 展开更多
关键词 Aqueous zinc-ion batteries(AZIBs) vanadium-based oxides Preparation Modification strategy Mechanism
原文传递
Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries:Toward high-energy and high-power applications 被引量:7
5
作者 Zhiqiang Lv Moxiang Ling +4 位作者 Meng Yue Xianfeng Li Mingming Song Qjong Zheng Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期361-390,共30页
Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of lo... Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of low energy&power density and short cycling lifespan owing to the heavy mass and large radius of Na^(+).Vanadium-based polyanionic compounds have advantageous characteristic of high operating voltage,high ionic conductivity and robust structural framework,which is conducive to their high energy&power density and long lifespan for SIBs.In this review,we will overview the latest V-based polyanionic compounds,along with the respective characteristic from the intrinsic crystal structure to performance presentation and improvement for SIBs.One of the most important aspect is to discover the essential problems existed in the present V-based polyanionic compounds for high-energy&power applications,and point out most suitable solutions from the crystal structure modulation,interface tailoring and electrode configuration design.Moreover,some scientific issues of V-based polyanionic compounds shall be also proposed and related future direction shall be provided.We believe that this review can serve as a motivation for further development of novel V-based polyanionic compounds and drive them toward high energy&power applications in the near future. 展开更多
关键词 Sodium ion battery vanadium-based polyanionic compounds High-energy&high-power applications Crystal structure modulation Interface tailoring Electrode configuration design
在线阅读 下载PDF
Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries 被引量:8
6
作者 Yaru Zhang Aibing Chen Jie Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期655-667,共13页
Aqueous zinc-ion batteries(ZIBs)have got wide attention with the increasing demands for energy resource recently.It has a number of merits compared with lithium-ion batteries,such as enhanced safety,low cost and envir... Aqueous zinc-ion batteries(ZIBs)have got wide attention with the increasing demands for energy resource recently.It has a number of merits compared with lithium-ion batteries,such as enhanced safety,low cost and environmental friendliness.Vanadium-based materials have been developed to serve as the cathodes of ZIBs for many years.But there are also some challenges to construct high performance ZIBs in the future.Herein,we reviewed the research progress of vanadium-based cathodes and discussed the energy storage mechanisms in ZIBs.In addition,we summarized the major challenges faced by vanadium-based cathodes and the corresponding ways to improve electrochemical performance of ZIBs.Finally,some excellent vanadium-based cathodes are summarized to pave the way for future research in ZIBs. 展开更多
关键词 Zinc-ion batteries vanadium-based cathodes Energy storage mechanisms
在线阅读 下载PDF
Recent advances of vanadium-based cathode materials for zinc-ion batteries 被引量:4
7
作者 Xuerong Li Haoyan Cheng +3 位作者 Hao Hu Kunming Pan Tongtong Yuan Wanting Xia 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3753-3761,共9页
Zn-ion batteries(ZIBs) have gained great attention as promising next-generation power sources, because of their low cost, enviable safety and high theoretical capacity. Recently, massive researches have been devoted t... Zn-ion batteries(ZIBs) have gained great attention as promising next-generation power sources, because of their low cost, enviable safety and high theoretical capacity. Recently, massive researches have been devoted to vanadium-based materials as cathodes in ZIBs, owing to their multiple valence states, competitive gravimetric energy density, but the capacity degradation, sluggish kinetics, low operating voltage hinder further optimization of their performance in ZIBs. This review summarizes recent progress to increase the interlayer spacing, structural stability, and the diffusion ability of the vip Zn ions, including the insertion of different ions, introduction of defects, design of diverse morphologies, the combination of other materials. We also focus on approaches to promoting the valuable performance of vanadiumbased cathodes, along with the related ongoing scientific challenges and limitations. Finally, the future perspectives and research directions of vanadium-based aqueous ZIBs are provided. 展开更多
关键词 Aqueous zinc-ion batteries vanadium-based materials Cathodes Energy storage Design strategy
原文传递
Defect engineering of vanadium-based electrode materials for zinc ion battery 被引量:4
8
作者 Ying Liu Yi Liu Xiang Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期78-86,共9页
With the quick development of sustainable energy sources, aqueous zinc-ion batteries(AZIBs) have become a highly potential energy storage technology. It is a crucial step to construct desired electrode materials for i... With the quick development of sustainable energy sources, aqueous zinc-ion batteries(AZIBs) have become a highly potential energy storage technology. It is a crucial step to construct desired electrode materials for improving the total performance of AZIBs. In recent years, considerable efforts have focused on the modification of vanadium-based cathode materials. In this review, we summarized defect engineering strategies of vanadium-based cathodes, including oxygen defects, cation vacancies and heterogeneous doping. Then, we discussed the effect of various defects on the electrochemical performance of electrode materials. Finally, we proposed the future challenges and development directions of V-based cathode materials. 展开更多
关键词 Aqueous zinc ion batteries vanadium-based materials Cathodel energy storage devices Defect engineering
原文传递
Vanadium-based cathodes for aqueous zinc ion batteries: Structure,mechanism and prospects 被引量:2
9
作者 Yi Ding Lele Zhang +3 位作者 Xin Wang Lina Han Weike Zhang Chunli Guo 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期97-108,共12页
As an emerging energy storage device with high-safety aqueous electrolytes, low-cost, environmental benignity and large-reserves, the rechargeable aqueous zinc-ion batteries(AZIBs) have attracted more and more attenti... As an emerging energy storage device with high-safety aqueous electrolytes, low-cost, environmental benignity and large-reserves, the rechargeable aqueous zinc-ion batteries(AZIBs) have attracted more and more attention. Vanadium-based compounds are also supposed as the potential candidate cathode materials for AZIBs due to their wide variety of phases, variable crystal structures and high theoretical capacity. In this review, the recent progress in the development of vanadium-based materials was summarized,and the relationship between the crystal structure types of active materials and Zn-ion transport mechanism was highlighted. During the charge-discharge process, the different electrostatic repulsion between the cations of vanadium-based compounds with different crystal structures and Zn^(2+)results in a variety of the Zn-ion storage mechanisms, which can be significant guidance for designing the advanced batteryelectrode materials for AZIBs. Furthermore, other factors associated with the storage mechanisms, such as electrolyte components and electrode morphology, are discussed. Finally, the strategies to improve the electrical conductivity, inhibit the dissolution and stabilize the crystal structure of vanadium-based compounds are proposed and the future prospects for developing high-energy-density AZIBs are presented. 展开更多
关键词 Aqueous zinc ion batteries vanadium-based materials Crystal structure Storage mechanisms Recent advances
原文传递
Pseudocapacitive Vanadium-based Materials toward High-Rate Sodium-Ion Storage 被引量:8
10
作者 Qiulong Wei Ryan H.De Block +2 位作者 Danielle M.Butts Christopher Choi Bruce Dunn 《Energy & Environmental Materials》 2020年第3期221-234,共14页
Sodium-ion battery materials and devices are promising candidates for largescale applications,owing to the abundance and low cost of sodium sources.Emerging sodium-ion pseudocapacitive materials provide one approach f... Sodium-ion battery materials and devices are promising candidates for largescale applications,owing to the abundance and low cost of sodium sources.Emerging sodium-ion pseudocapacitive materials provide one approach for achieving high capacity at high rates,but are currently not well understood.Herein,a comprehensive overview of the fundamentals and electrochemical behaviors of vanadium-based pseudocapacitive materials for sodium-ion storage is presented.The insight of sodium-ion storage mechanisms for various vanadium-based materials,including vanadium oxides,vanadates,vanadium sulfides,nitrides,and carbides are systematically discussed and summarized.In particular,areas for further development to improve fundamental understanding of electrochemical and structural properties of materials are identified.Finally,we provide a perspective on the application of pseudocapacitive materials in high-power and high-energy sodium-ion storage devices(e.g.,sodium-ion capacitors). 展开更多
关键词 charge-storage mechanism nanomaterials pseudocapacitance sodium-ion capacitors vanadium-based materials
在线阅读 下载PDF
A critical review of vanadium-based electrode materials for rechargeable magnesium batteries 被引量:1
11
作者 Xiu-Fen Ma Hong-Yi Li +7 位作者 Weiwei Ren Daibo Gao Fuyu Chen Jiang Diao Bing Xie Guangsheng Huang Jingfeng Wang Fusheng Pan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第22期56-74,共19页
Rechargeable magnesium batteries(RMBs)are one of the most promising next-generation energy storage devices due to their high safety and low cost.With a large family and versatile advantageous structures,vanadium-based... Rechargeable magnesium batteries(RMBs)are one of the most promising next-generation energy storage devices due to their high safety and low cost.With a large family and versatile advantageous structures,vanadium-based compounds are highly competitive as electrode materials of RMBs.This review summa-rizes the structural characteristics,electrochemical performance,and refinement methods of vanadium-based materials,including vanadium oxides,vanadium sulfides,vanadates,vanadium phosphates,and vanadium spinel compounds,as RMB cathodes.Although relatively less,vanadium-based materials as RMB anodes are also introduced.According to the application requirements of RMBs,present common strategies are concluded to improve the electrochemical performance of vanadium-based materials;the probably promising development directions are also proposed,which are not limited only to the elec-trode materials,but also the compatible electrolytes and separator materials.In the near future,RMBs are expected from their large-scale application,standing at the forefront of the energy storage era. 展开更多
关键词 Rechargeable magnesium battery vanadium-based material Cathode ANODE
原文传递
Fabrication and Analysis of Vanadium-Based Metal Powders for Selective Laser Melting 被引量:1
12
作者 Jialin Yang Jingfeng Li 《Journal of Minerals and Materials Characterization and Engineering》 2018年第1期50-59,共10页
Vanadium Alloy is a type of advanced nuclear material with many ideal properties compared as traditional nuclear materials, which has very wide and important application in first-wall and blanket structural material f... Vanadium Alloy is a type of advanced nuclear material with many ideal properties compared as traditional nuclear materials, which has very wide and important application in first-wall and blanket structural material for fusion power plant applications. So it has attracted increasing attentions, especially on new manufacturing methods, such as selective laser melting and so on. In this paper, the comparative study of the powders obtained by mechanical mixing method, dry grinding method and wet grinding method respectively was performed to evaluate the effect of ball milling process on the microstructure and degree of alloying of the vanadium-based powder mixtures with the nominal composition of V5Cr5Ti vanadium alloy. The powders prepared by dry grinding method exhibits better spherical-like morphology and degree of alloying than those prepared by mechanical mixing method and wet grinding method, which indicates that dry grinding method can be used to prepare the superfine vanadium alloy powders for selective laser melting. This work provides a new method as well as important insights into the preparation of superfine vanadium alloy powders for selective laser melting additive manufacturing technology. 展开更多
关键词 vanadium-based Metal Powders MILLING Process Microstructure ALLOYING Degree Selective Laser Melting
暂未订购
Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries 被引量:14
13
作者 Ying Liu Xiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期223-237,共15页
In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic an... In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic and safety,ZIBs can be considered as alternatives to lithium-ion batteries(LIBs).Vanadiumbased compounds with various structures and large layer spacings are considered as suitable cathode candidates for ZIBs.In this review,the recent research advances of vanadium-based electrode materials are systematically summarized.The electrode design strategy,electrochemical performances and energy storage mechanisms are emphasized.Finally,we point out the limitation of vanadium-based materials at present and the future prospect. 展开更多
关键词 Aqueous zinc ion batteries vanadium-base compounds Cathode materials Energy storage mechanism
在线阅读 下载PDF
Low dielectric loss in vanadium-based zircon ceramics via high-entropy strategy
14
作者 Yuheng Zhang Huaicheng Xiang +3 位作者 Xiaoyu Wu Yang Zhou Ying Tang Liang Fang 《Journal of Advanced Ceramics》 2025年第1期151-161,共11页
Zircon ceramics have potential applications in next-generation wireless communication because of their low permittivity and adjustable temperature coefficient at microwave frequencies.However,the vast challenge of rea... Zircon ceramics have potential applications in next-generation wireless communication because of their low permittivity and adjustable temperature coefficient at microwave frequencies.However,the vast challenge of realizing ultralow dielectric loss still exists.Here,we propose a high-entropy strategy to enhance the bonding of the A-site dodecahedron in zircon and design(Nd_(0.2)Eu_(0.2)Y_(0.2)Ho_(0.2)Yb_(0.2))VO_(4) ceramics with a high quality factor(high Q×f,that is,low dielectric loss).The(Nd_(0.2)Eu_(0.2)Y_(0.2)Ho_(0.2)Yb_(0.2))VO_(4) high-entropy ceramics,which belong to the tetragonal zircon structure with the I4_(1)/amd space group,exhibit a low relative permittivity(ε_(r)=11.55),a negative temperature coefficient of resonant frequency(τ_(f)=−37.3 ppm/℃),and a high Q×f of 76,400 GHz(at 12.31 GHz).The high Q×f value can be attributed to the high chemical bond strength and structural stability.Furthermore,the relationship between the crystal structure and the microwave dielectric properties of(Nd_(0.2)Eu_(0.2)Y_(0.2)Ho_(0.2)Yb_(0.2))VO_(4) high-entropy ceramics was analyzed through high resolution transmission electron microscopy(HRTEM),Raman spectroscopy,far-infrared reflection spectroscopy,and chemical bond theory.This work provides an effective avenue for designing microwave dielectric materials with low loss to meet the demands of passive components. 展开更多
关键词 high-entropy ceramics vanadium-based zircon microwave dielectric properties low dielectric loss chemical bond characteristics
原文传递
Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors
15
作者 Rui-Jie Zhu Jiang Liu +3 位作者 Chao Hua Hao-Yu Pan Yi-Jun Cao Meng Li 《Rare Metals》 SCIE EI CAS 2024年第2期431-454,共24页
Solid-state flexible supercapacitors(SCs)have many advantages of high specific capacitance,excellent flexibility,fast charging and discharging,high power density,environmental friendliness,high safety,light weight,duc... Solid-state flexible supercapacitors(SCs)have many advantages of high specific capacitance,excellent flexibility,fast charging and discharging,high power density,environmental friendliness,high safety,light weight,ductility,and long cycle stability.They are the ideal choice for the development of flexible energy storage technology in the future,and provide a good prospect for energy storage applications.At present,solid-state flexible SCs are widely used for portable electronic equipment and wearable energy storage equipment,the research of them has become the focus of a growing number of researchers.Electrode material is the key part of SCs and always determines the electrochemical performance of SCs.It has been a hotspot and focus of research.Vanadium-based compounds are considered to be a promising electrode material for SCs because of variable valence,open structure,high theoretical capacity,and low price.Therefore,this study first gives an overview of solid-state flexible SCs,then reviews the current research status of vanadium-based electrode materials in solid-state flexible SCs,and proposes some strategies to solve some problems of vanadium-based electrode materials. 展开更多
关键词 vanadium-based materials Flexible energy storage Specific capacitance Supercapacitors(SCs)
原文传递
Regulation on Morphology and Electronic Structure Design of Vanadium-Based Sodium Phosphate Cathodes for High-Performance Sodium-Ion Batteries
16
作者 Xinran Qi Baoxiu Hou +11 位作者 Ruifang Zhang Xiaocui Chen Zhenrong Fu Xin Zhou Haiyan Liu Ningzhao Shang Shuaihua Zhang Longgang Wang Chunsheng Li Jianjun Song Shuangqiang Chen Xiaoxian Zhao 《Carbon Energy》 2025年第9期66-97,共32页
Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available... Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available cathode materials,vanadium-based sodium phosphate cathodes are particularly notable for their high operating voltage,excellent thermal stability,and superior cycling performance.However,these materials face significant challenges,including sluggish reaction kinetics,the toxicity of vanadium,and poor electronic conductivity.To overcome these limitations and enhance electrochemical performance,various strategies have been explored.These include morphology regulation via diverse synthesis routes and electronic structure optimization through metal doping,which effectively improve the diffusion of Na+and electrons in vanadium-based phosphate cathodes.This review provides a comprehensive overview of the challenges associated with V-based polyanion cathodes and examines the role of morphology and electronic structure design in enhancing performance.Key vanadium-based phosphate frameworks,such as orthophosphates(Na_(3)V_(2)(PO_(4))_(3)),pyrophosphates(NaVP_(2)O_(7),Na_(2)(VO)P_(2)O_(7),Na_(7)V_(3)(P_(2)O_(7))_(4)),and mixed phosphates(Na_(7)V_(4)(P_(2)O_(7))_(4)PO_(4)),are discussed in detail,highlighting recent advances and insights into their structure-property relationships.The design of cathode material morphology offers an effective approach to optimizing material structures,compositions,porosity,and ion/electron diffusion pathways.Simultaneously,electronic structure tuning through element doping allows for the regulation of band structures,electron distribution,diffusion barriers,and the intrinsic conductivity of phosphate compounds.Addressing the challenges associated with vanadium-based sodium phosphate cathode materials,this study proposes feasible solutions and outlines future research directions toward advancement of high-performance vanadium-based polyanion cathodes. 展开更多
关键词 cathode element doping sodium-ion batteries structural design vanadium-based phosphate
在线阅读 下载PDF
A review on recent developments of vanadium-based cathode for rechargeable zinc-ion batteries 被引量:7
17
作者 Yan Wu Tian-Yi Song Li-Na Chen 《Tungsten》 2021年第3期289-304,共16页
Benefiting from their high safety,low cost,and excellent performance,aqueous zinc-ion batteries are regarded as a promising candidate for next-generation commercial energy storage devices.High-performance cathodes are... Benefiting from their high safety,low cost,and excellent performance,aqueous zinc-ion batteries are regarded as a promising candidate for next-generation commercial energy storage devices.High-performance cathodes are urgently needed to accelerate practical application of zinc-ion batteries(ZIBs).Among various cathodes reported previously,vanadium-based materials attract a great deal of attention since they hold high capacity and good cycling stability.Though fruitful achievements have been made,there are amounts of crystal structures and energy storage mechanisms are still unclear,which will significantly affect performance of full batteries.This review presents a comprehensive overview of structure characteristics,relevant electrochemical behavior,and proposed energy storage mechanisms of reported vanadium-based materials which provide effective Zn-storage performance.Meanwhile,recent developments of vanadium-based materials for ZIBs are systematically summarized.Last but not least,the future perspectives are also discussed.We hope that this review can provide suggestions to design high-performance electrode materials and promote the development of ZIBs. 展开更多
关键词 Aqueous zinc-ion batteries vanadium-based materials CATHODE Structure Energy storage mechanism
原文传递
Progress and perspective of vanadium-based cathode materials for lithium ion batteries 被引量:2
18
作者 Yang-Yang Zhou Zi-Ying Zhang +2 位作者 Hui-Zhen Zhang Yang Li Ying Weng 《Tungsten》 2021年第3期279-288,共10页
With the rapid development of various portable electronic devices,lithium ion battery electrode materials with high energy and power density,long cycle life and low cost were pursued.Vanadium-based oxides/sulfides wer... With the rapid development of various portable electronic devices,lithium ion battery electrode materials with high energy and power density,long cycle life and low cost were pursued.Vanadium-based oxides/sulfides were considered as the ideal next-generation electrode materials due to their high capacity,abundant reserves and low cost.However,the inherent low conductivity and ion diffusion coefficient limit their practical applications in lithium ion batteries.In recent years,vanadium-based electrode materials have been designed into various nanostructures through a variety of nanofabrication processes to overcome the electrochemical performance bottleneck caused by the above disadvantages due to the new properties of nanomaterials that cannot be achieved at the solid level.However,how to obtain high-performance vanadium-based electrode nanomaterials with controllable morphology and structure through low-cost and environmentally friendly processes is still a huge challenge.In this paper,the basic structure,modified morphologies and synthesis methods of vanadium-based electrode materials for lithium ion batteries were reviewed.In addition,the disadvantages,new challenges and future development direction of vanadium electrode materials were also discussed. 展开更多
关键词 vanadium-based materials Cathode materials Lithium ion batteries Energy storage
原文传递
Rocking-chair ammonium ion battery with high rate and long-cycle life 被引量:3
19
作者 Tongkai Wang Xiaojuan Li +5 位作者 Shunshun Zhao Hongxia Bu Chuanlin Li Na Li Xixi Zhang Xijin Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期563-567,共5页
Aqueous rechargeable ammonium-ion batteries(AIBs)have drew considerable attention because of their capacity for high rates,low cost,and high safety.However,developing desired electrodes requiring stable structure in t... Aqueous rechargeable ammonium-ion batteries(AIBs)have drew considerable attention because of their capacity for high rates,low cost,and high safety.However,developing desired electrodes requiring stable structure in the aqueous fast ammoniation/de-ammoniation becomes urgent.Herein,an ammonium ion full battery using Cu_(3)[Fe(CN)_(6)]_(2)(CuHCF)acting to be a cathode and barium vanadate(BVO)acting to be an anode is described.Its excellent electrochemical behavior of Prussian blue analogs and the perfectly matched lattice structure of NH_(4)^(+)is expected.And the open structure of vanadium compounds satisfies the fast ammoniation/de-ammoniation of NH4+is also achieved.As a result of these synergistic effects,the BVO//CuHCF full cell retains 80.5 percent of its capacity following 1000 cycling.These achievements provide new ideas for developing low-cost and long-life AIBs. 展开更多
关键词 Copper hexacyanoferrate vanadium-based compounds Aqueous ammonium ion batteries Long-term cyclability Ammonium ion storage mechanism
原文传递
Dual-Defect Engineering Strategy Enables High-Durability Rechargeable Magnesium-Metal Batteries 被引量:2
20
作者 Fuyu Chen Bai‑Qing Zhao +8 位作者 Kaifeng Huang Xiu‑Fen Ma Hong‑Yi Li Xie Zhang Jiang Diao Jili Yue Guangsheng Huang Jingfeng Wang Fusheng Pan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期449-461,共13页
Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategie... Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategies have been devised to enhance the Mg^(2+)migration kinetics and structural stability of cathodes,they fail to improve electronic conductivity,rendering the cathodes incompatible with magnesium-metal anodes.Herein,we propose a dual-defect engineering strategy,namely,the incorporation of Mg^(2+)pre-intercalation defect(P-Mgd)and oxygen defect(Od),to simultaneously improve the Mg^(2+)migration kinetics,structural stability,and electronic conductivity of the cathodes of RMMBs.Using lamellar V_(2)O_(5)·nH_(2)O as a demo cathode material,we prepare a cathode comprising Mg_(0.07)V_(2)O_(5)·1.4H_(2)O nanobelts composited with reduced graphene oxide(MVOH/rGO)with P-Mgd and Od.The Od enlarges interlayer spacing,accelerates Mg^(2+)migration kinetics,and prevents structural collapse,while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity.Consequently,the MVOH/rGO cathode exhibits a high capacity of 197 mAh g^(−1),and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g^(−1),capable of powering a light-emitting diode.The proposed dual-defect engineering strategy provides new insights into developing high-durability,high-capacity cathodes,advancing the practical application of RMMBs,and other new secondary batteries. 展开更多
关键词 Rechargeable magnesium-metal batteries Dual-defect engineering vanadium-based cathode High durability Lamellar structure
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部