The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulatio...The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.展开更多
The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design proced...The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design procedure of the proposed controller is much simpler than that of the existing controller based on conventional adaptive backstepping method.In the system,the damping coefficient is measured inaccurately,and the reactance of transmission line also contains a few uncertainties.A nonlinear robust controller and parameter updating laws are obtained simultaneously.The system does not need to be linearized,and the closed-loop error system is guaranteed to be asymptotically stable.The design procedure and simulation results demonstrate the effectiveness of the proposed design.展开更多
Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound co...Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.展开更多
The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance...The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios.展开更多
A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pr...A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body,a cooling structure is set on the valve seat.This can significantly reduce the temperature of the valve body and valve seat.The effects of its structure on the cooling characteristics and stress of the valve seat are studied,and six main parameters that can completely describe the geometry of the cooling structure are proposed.The central composite design method is used to select sample points,and the multi-objective genetic algorithm(MOGA)method is used for optimal structural design.A modification method according to the main parameters for the valve seat is proposed.The results show that the cooling structure weakens the pressure-bearing capability of the valve seat.Among the six main parameters of the valve seat,the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat.An optimum design value is proposed.This work can provide a reference for the design of high-temperature and high-pressure valves.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classica...A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications.展开更多
Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system s...Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.展开更多
Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different type...Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different types of trims have been investigated.In this study,by numerical analysis,a globe control valve was investigated by employing four different cases(without trim,with one trim,with two and three trims)and the impact of the number of these trims on the intensity,formation region and the initiation point of cavitation was analyzed.It was found that the addition of one stage or two stages of trims reduces the intensity and delays the onset of cavitation,relative to the valve without trim.However,no significant differences in terms of intensity and initiation point of cavitation were observed in the cases where two or three trims were used.Therefore,due to the high cost of producing the trims,and the severe drop in flow coefficient,it is not economically and technically justified to increase the number of trims to more than three.展开更多
Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the tr...Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.展开更多
A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is...A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is therefore important for operation of the system.In this study,a fault diagnosis based on the mathematical model(MM)imputation and the modified deep residual shrinkage network(MDRSN)is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data.The multiple fault time-series samples of the control valve at different openings are collected for fault diagnosis to verify the effectiveness of the proposed method.The effects of the proposed method in missing data imputation and fault diagnosis are analyzed.Compared with random and k-nearest neighbor(KNN)imputation,the accuracies of MM-based imputation are improved by 17.87%and 21.18%,in the circumstances of a20.00%data missing rate at valve opening from 10%to 28%.Furthermore,the results show that the proposed MDRSN can maintain high fault diagnosis accuracy with missing data.展开更多
Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve,as high-temperature environment may bring problems,such as blocking of spool and increasing of le...Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve,as high-temperature environment may bring problems,such as blocking of spool and increasing of leakage,to the valve.In this paper,a high-temperature flow-rate control valve,pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines.After introducing the construction and working principle,the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve.By using different boundary conditions,different methods of simulations are carried out and compared.The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured.By comparing the simulation and experimental results,a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.展开更多
The physical model of -20 diesel oil and force model of injector controlvalve of common rail system is built. The changes of the fluid thickness are investigated on thebase of the results of CFD and experiments for co...The physical model of -20 diesel oil and force model of injector controlvalve of common rail system is built. The changes of the fluid thickness are investigated on thebase of the results of CFD and experiments for control valve of injector. The results indicate thata fluid thickness of 0.02-0.03 mm between the poppet and valve guide is sufficient to dampen anyexcessive control valve poppet bouncing.展开更多
Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature re...Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature regarding the influence of valve plug on the internal and external features in globe control valves. Thus the effect of valve plug is studied by CFD and experiment in this paper. It is obtained from external features that the pressure drop between upstream and downstream pressure-sampling position increases exponentially with flow rate. And for small valve opening, the increment of pressure drop decreases with the increase of cone angle(β). However, with the increase of valve opening, the effect of cone angle diminishes significantly. It is also found that the cone angle has little effect on flow coefficient(Cv) when the valve opening is larger than 70%. But for the cases less than 70%, Cv curve varies from an arc to a straight line. The variation of valve performance is caused by the change of internal flow. The results of internal flow show that cone angle has negligible effect on flow properties for the cases of valve opening larger than 70%. However, when valve opening is smaller than 70%, the pressure drop of orifice decreases with the increase of β, making the reduction in value and scope of the high speed zone around the conical surface of valve plug, and then results in a decreasing intensity of adjacent downstream vortex. Meanwhile, it is concluded from the results that the increase of cone angle will be beneficial for the anti-cavitation and anti-erosion of globe control valve. This paper focuses on the internal and external features of globe control valve that caused by the variation of cone angle, arriving at some results beneficial for the design and usage of globe control valve.展开更多
Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dy...Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.展开更多
Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model referen...Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.展开更多
Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matl...Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.展开更多
As the growing requirements for the stability and safety of process industries,the fault detection and diagnosis of pneumatic control valves have crucial practical significance.Many of the approaches were presented in...As the growing requirements for the stability and safety of process industries,the fault detection and diagnosis of pneumatic control valves have crucial practical significance.Many of the approaches were presented in the literature to diagnose faults through the comparison of residual sequences with thresholds.In this study,a novel hybrid neural network model has been developed to address the issue of pneumatic control valve fault diagnosis.First,the feature extractor automatically extracts in-depth features of the signals through multi-scale convolutional neural networks with different kernel sizes,which not only adequately explores the local distinguishable features,but also takes into account the global features.The extracted features are then fused by the feature fusion layer to reduce redundant features.Finally,the long short-term memory for fault identification and the dense layer for fault classification.Experimental results demonstrate that the average test accuracy is above 94%and 16 out of the 19 conditions can be successfully detected in the simulated actual industrial environment.The effectiveness and practicability of the proposed method have been verified through a comparative analysis with existing intelligent fault diagnosis methods,and the results suggest that the developed model has better robustness.展开更多
An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test ri...An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test rig. The investigation shows that flow coefficient is 30% up more than that of the control valve of GX-1 type used widely in domestic power plants now, as small-medium lifts. If the relative lift (h/D) is less than 20%, the valve can always work steadily in all the pressure ratios. When the h/D is between 20% to 24%, big vibration of valve stem occurs if the pressure ratio is between 0.7 to 0.8. When h/D is more than 25%, relatively great vibration happens in a wide range of pressure ratios of 0.4 to 0.85.展开更多
Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,sp...Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,speed,flow,etc.within the appropriate operating range and to ensure a quality product is produced.All control valves have a bypass so that production can proceed if maintenance is needed for the control valve as part of the control loop.The important point is that in both operation and maintenance situations,the bypass valve and the control valve should have approximately the same flow capacity to provide nearly the same amount of pressure.This paper presents a case study in seawater service on the selection of manual bypass valves for a 16″control valve in class 150 and titanium material.A 16″butterfly valve of class 150 was chosen for the control valve bypass,which provided a much higher flow capacity than the control valve.In this paper,four solutions are recommended to achieve the same coefficient value(Cv)for the control and bypass valve.Using the reduced size butterfly valve could be the cheapest and best solution.On the other hand,selecting the same control valve for bypass line is the most expensive but maybe the most reliable solution.Using a flow orifice for throttling could be ranked as the second expensive option and the second reliable one.Selection of butterfly valve for throttling is the second cheapest option,but it has the least reliability.Different parameters such as space and weight saving,cost as well as reliability have been considered in evaluation of different solutions.展开更多
基金This project is supported by National Natural Science Foundation of China(No.59875076).
文摘The simulation model of a valve control hydraulic system with long pipe isestablished in Simulink4.0, and then the step responses of the systems with difference pipeparameters are investigated by simulation. Simulation results show that the long pipes will slowdown the step response of system and make it fluctuate periodically. The results of simulationconform to the results of experiment on the whole, which proves the mathematic model is correct.
基金supported by the National Natural Science Foundation of China(No.60874024,90816028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200801450019)
文摘The problem of transient stability for a single machine infinite bus system with turbine main steam valve control is addressed by means of a novel adaptive backstepping method in this paper.The recursive design procedure of the proposed controller is much simpler than that of the existing controller based on conventional adaptive backstepping method.In the system,the damping coefficient is measured inaccurately,and the reactance of transmission line also contains a few uncertainties.A nonlinear robust controller and parameter updating laws are obtained simultaneously.The system does not need to be linearized,and the closed-loop error system is guaranteed to be asymptotically stable.The design procedure and simulation results demonstrate the effectiveness of the proposed design.
基金Supported by the National Natural Science Foundation of China(No.51505412)the Independent Study Program for Young Teachers in Yanshan University(No.14LGB004)
文摘Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.
基金funded by Gansu Provincial Department of Education(Industrial Support Plan Project:2025CYZC-048).
文摘The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios.
基金supported by the National Natural Science Foundation of China(No.52175067)the Zhejiang Key Research&Development Project(No.2021C01021)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY20E050016)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZC20241478)。
文摘A high-temperature and high-pressure valve is the key equipment of a wind tunnel system;it controls the generation of high-temperature and high-pressure gas.To reduce the adverse impact of high-temperature and high-pressure gas on the strength of the valve body,a cooling structure is set on the valve seat.This can significantly reduce the temperature of the valve body and valve seat.The effects of its structure on the cooling characteristics and stress of the valve seat are studied,and six main parameters that can completely describe the geometry of the cooling structure are proposed.The central composite design method is used to select sample points,and the multi-objective genetic algorithm(MOGA)method is used for optimal structural design.A modification method according to the main parameters for the valve seat is proposed.The results show that the cooling structure weakens the pressure-bearing capability of the valve seat.Among the six main parameters of the valve seat,the distance from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates have the most obvious effects on the average stress of the valve seat.An optimum design value is proposed.This work can provide a reference for the design of high-temperature and high-pressure valves.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金This work was supported by the National Natural Science Foundation of China (No. 60574013).
文摘A new approach for nonlinear adaptive control of turbine main steam valve is developed. In comparison with the existing controller based on "classical" adaptive backstepping, this method does not follow the classical certaintyequivalence principle in the design of adaptive control law. We introduce this approach, for the first time, to power systems and present a novel parameter estimator and dynamic feedback controller for a single machine infinite bus (SMIB) system with steam valve control. This system contains unknown parameters such as reactance of transmission lines. Besides preserving useful nonlinearities and the real-time estimation of uncertain parameters, the proposed approach possesses better performances with respect to the response of the system and the speed of adaptation. The simulation results demonstrate that the proposed approach is better than the design based on "classical" adaptive backstepping in terms of properties of stability and parameter estimation, and recovers the performance of the "full-information" controller. Hence, the proposed method provides an alternative for engineers in applications.
基金Supported by National Natural Science Foundation of China(Grant No.51605417)Key Project of Hebei Provincial Natural Science Foundation,China(Grant No.E2016203264)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)
文摘Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.
文摘Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different types of trims have been investigated.In this study,by numerical analysis,a globe control valve was investigated by employing four different cases(without trim,with one trim,with two and three trims)and the impact of the number of these trims on the intensity,formation region and the initiation point of cavitation was analyzed.It was found that the addition of one stage or two stages of trims reduces the intensity and delays the onset of cavitation,relative to the valve without trim.However,no significant differences in terms of intensity and initiation point of cavitation were observed in the cases where two or three trims were used.Therefore,due to the high cost of producing the trims,and the severe drop in flow coefficient,it is not economically and technically justified to increase the number of trims to more than three.
基金supported by the National Natural Science Foundation of China(Grant No.52174064)
文摘Determining the venting time of a gas trunk pipeline segment provides an important basis for formulating an emergency plan in the advent of unexpected accidents.As the natural gas venting process corresponds to the transient flow,it is necessary to establish a transient hydraulic-thermal simulation model in order to determine the venting time.In this paper,based on two kinds of venting scenarios in which there is only one venting point in the venting system of a gas trunk pipeline segment—namely,where the venting point is either at one of the two ends or at the junction of two gas trunk pipeline segments—transient hydraulic-thermal simulation models are established.The models consist of gas flow governing equations,the gas state equation,gas physical property equations,initial conditions,and appropriate boundary conditions.The implicit central difference method is used to discretize the gas flow partial differential equations,and the trust-region-dogleg algorithm is used to solve the equations corresponding to each time step,in order to dynamically simulate the whole venting process.The judgment condition for the end of the venting process is that the average pressure of gas trunk pipeline segment is less than 0.11 MPa(actual pressure).Comparing the simulation results of the proposed model with those of the OLGA software and real operational data,we find that the venting time error is less than 10%.On this basis,a venting valve opening control principle is proposed,which prevents the venting noise from exceeded the specified noise value(85 d B)in the venting design of domestic gas pipeline projects.The established calculation model for venting time(dynamic simulation model)for a gas trunk pipeline segment and the proposed opening control principle of venting valve provide reference for the optimal operation of gas pipeline venting systems.
基金supported by the National Natural Science Foundation of China(No.51875113)the Natural Science Joint Guidance Foundation of the Heilongjiang Province of China(No.LH2019E027)the PhD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(No.XK2070021009),China。
文摘A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is therefore important for operation of the system.In this study,a fault diagnosis based on the mathematical model(MM)imputation and the modified deep residual shrinkage network(MDRSN)is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data.The multiple fault time-series samples of the control valve at different openings are collected for fault diagnosis to verify the effectiveness of the proposed method.The effects of the proposed method in missing data imputation and fault diagnosis are analyzed.Compared with random and k-nearest neighbor(KNN)imputation,the accuracies of MM-based imputation are improved by 17.87%and 21.18%,in the circumstances of a20.00%data missing rate at valve opening from 10%to 28%.Furthermore,the results show that the proposed MDRSN can maintain high fault diagnosis accuracy with missing data.
文摘Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve,as high-temperature environment may bring problems,such as blocking of spool and increasing of leakage,to the valve.In this paper,a high-temperature flow-rate control valve,pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines.After introducing the construction and working principle,the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve.By using different boundary conditions,different methods of simulations are carried out and compared.The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured.By comparing the simulation and experimental results,a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.
文摘The physical model of -20 diesel oil and force model of injector controlvalve of common rail system is built. The changes of the fluid thickness are investigated on thebase of the results of CFD and experiments for control valve of injector. The results indicate thata fluid thickness of 0.02-0.03 mm between the poppet and valve guide is sufficient to dampen anyexcessive control valve poppet bouncing.
基金Supported by National Natural Science Foundation of China(Grant Nos.51406184,21276241)Science Foundation of Zhejiang Sci-Tech University of China(Grant No.14022005-Y)
文摘Globe control valve is widely used in chemical, petroleum and hydraulic industries, and its throttling feature is achieved by the adopting of valve plug. However, very limited information is available in literature regarding the influence of valve plug on the internal and external features in globe control valves. Thus the effect of valve plug is studied by CFD and experiment in this paper. It is obtained from external features that the pressure drop between upstream and downstream pressure-sampling position increases exponentially with flow rate. And for small valve opening, the increment of pressure drop decreases with the increase of cone angle(β). However, with the increase of valve opening, the effect of cone angle diminishes significantly. It is also found that the cone angle has little effect on flow coefficient(Cv) when the valve opening is larger than 70%. But for the cases less than 70%, Cv curve varies from an arc to a straight line. The variation of valve performance is caused by the change of internal flow. The results of internal flow show that cone angle has negligible effect on flow properties for the cases of valve opening larger than 70%. However, when valve opening is smaller than 70%, the pressure drop of orifice decreases with the increase of β, making the reduction in value and scope of the high speed zone around the conical surface of valve plug, and then results in a decreasing intensity of adjacent downstream vortex. Meanwhile, it is concluded from the results that the increase of cone angle will be beneficial for the anti-cavitation and anti-erosion of globe control valve. This paper focuses on the internal and external features of globe control valve that caused by the variation of cone angle, arriving at some results beneficial for the design and usage of globe control valve.
基金Key Science-Technology Foundation of Hunan Province, China (No. 05GK2007).
文摘Associated dynamic performance of the clamping force control valve used in continuously variable transmission (CVT) is optimized. Firstly, the structure and working principle of the valve are analyzed, and then a dynamic model is set up by means of mechanism analysis. For the purpose of checking the validity of the modeling method, a prototype workpiece of the valve is manufactured for comparison test, and its simulation result follows the experimental result quite well. An associated performance index is founded considering the response time, overshoot and saving energy, and five structural parameters are selected to adjust for deriving the optimal associated performance index. The optimization problem is solved by the genetic algorithm (GA) with necessary constraints. Finally, the properties of the optimized valve are compared with those of the prototype workpiece, and the results prove that the dynamic performance indexes of the optimized valve are much better than those of the prototype workpiece.
文摘Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.
基金supported by the International S&T Cooperation Program of China(GrantNo.2010DFB43660)National Natural Science Foundation of China(Grant No.51375286)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.16JF005)
文摘Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.
基金funded by the“Ningxia Key Research and Development Project”,grant number“2022BEE02002”.
文摘As the growing requirements for the stability and safety of process industries,the fault detection and diagnosis of pneumatic control valves have crucial practical significance.Many of the approaches were presented in the literature to diagnose faults through the comparison of residual sequences with thresholds.In this study,a novel hybrid neural network model has been developed to address the issue of pneumatic control valve fault diagnosis.First,the feature extractor automatically extracts in-depth features of the signals through multi-scale convolutional neural networks with different kernel sizes,which not only adequately explores the local distinguishable features,but also takes into account the global features.The extracted features are then fused by the feature fusion layer to reduce redundant features.Finally,the long short-term memory for fault identification and the dense layer for fault classification.Experimental results demonstrate that the average test accuracy is above 94%and 16 out of the 19 conditions can be successfully detected in the simulated actual industrial environment.The effectiveness and practicability of the proposed method have been verified through a comparative analysis with existing intelligent fault diagnosis methods,and the results suggest that the developed model has better robustness.
基金This work was supported by National Natural Science Foundations of China (No503360501,50323001)
文摘An experimental study on flowrate and stability of a type of control valve of 600MW supercritical steam-turbine was presented by measuring instruments of static, dynamic pressure and vibration in self-designed test rig. The investigation shows that flow coefficient is 30% up more than that of the control valve of GX-1 type used widely in domestic power plants now, as small-medium lifts. If the relative lift (h/D) is less than 20%, the valve can always work steadily in all the pressure ratios. When the h/D is between 20% to 24%, big vibration of valve stem occurs if the pressure ratio is between 0.7 to 0.8. When h/D is more than 25%, relatively great vibration happens in a wide range of pressure ratios of 0.4 to 0.85.
文摘Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,speed,flow,etc.within the appropriate operating range and to ensure a quality product is produced.All control valves have a bypass so that production can proceed if maintenance is needed for the control valve as part of the control loop.The important point is that in both operation and maintenance situations,the bypass valve and the control valve should have approximately the same flow capacity to provide nearly the same amount of pressure.This paper presents a case study in seawater service on the selection of manual bypass valves for a 16″control valve in class 150 and titanium material.A 16″butterfly valve of class 150 was chosen for the control valve bypass,which provided a much higher flow capacity than the control valve.In this paper,four solutions are recommended to achieve the same coefficient value(Cv)for the control and bypass valve.Using the reduced size butterfly valve could be the cheapest and best solution.On the other hand,selecting the same control valve for bypass line is the most expensive but maybe the most reliable solution.Using a flow orifice for throttling could be ranked as the second expensive option and the second reliable one.Selection of butterfly valve for throttling is the second cheapest option,but it has the least reliability.Different parameters such as space and weight saving,cost as well as reliability have been considered in evaluation of different solutions.